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Abstract

The blind source separation problem is to extract the underlying
source signals from a set of their linear mixtures, where the mixing
matrix is unknown. This situation is common, eg in acoustics, ra-
dio, and medical signal processing. We exploit the property of the
sources to have a sparse representation in a corresponding (possi-
bly overcomplete) signal dictionary. Such a dictionary may con-
sist of wavelets, wavelet packets, etc., or be obtained by learning
from a given family of signals. Starting from the mazimum poste-
riori framework, which is applicable to the case of more sources
than mixtures, we derive a few other categories of objective func-
tions, which provide faster and more robust computations, when
there are an equal number of sources and mixtures. Our experi-
ments with artificial signals and with musical sounds demonstrate
significantly better separation than other known techniques.



1 Introduction

We consider the problem of blind separation of source signals from a set of
their linear mixtures, including the case when the number of sources is larger
than the number of mixtures. This work can be considered a natural gener-
alization of the Bell-Sejnowski Infomax [2] and maximum posteriori [13, 15]
methods of blind source separation. We assume that the source signals have a
sparse representation in a corresponding (possibly overcomplete) signal dic-
tionary. In this way independence and sparsity are not required from the
signals themselves, but rather from their decomposition coefficients, which is
more natural in many practical cases. On the other hand our approach may
be considered an extension of basis pursuit [7] to the case of signal mixtures.

This paper is organized as follows. Section 2 gives the problem formu-
lation and assumptions. In Section 3 we present the mazimum posteriori
approach, which is applicable to the case of more sources than mixtures.
In Section 4 we derive another objective function, which provides more ro-
bust computations when there are an equal number of sources and mixtures.
Section 5 presents sequential source extraction using quadratic programming
with non-convex quadratic constraints. Finally, in Section 6 we derive a faster
method for non-overcomplete dictionaries and demonstrate high-quality sep-
aration of synthetically mixed musical sounds.

2 Problem Formulation and Assumptions

Let z(t) be an N-dimensional vector of sensor signals which is an instan-
taneous linear mixture of M unknown “independent” sources s(t), possibly
corrupted by additive noise £(t):

(t) = As(t) +£(1) (1)

We will estimate the unknown mixing matrix of real numbers A (up to row
permutation and scaling) and the source signal s(¢) (up to component per-
mutation and scaling.)

We take advantage of the fact that many natural sources of signal have



sparse representation in the proper signal dictionary ¢:

si(t) = kz_: Cirer(t) (2)

The functions i (t) are called atoms or elements of the dictionary. These
elements do not have to be linearly independent, and instead may form an
overcomplete dictionary. Important examples are wavelet-related dictionaries
(wavelet packets, etc.) [7, 16]. Sparsity means that only a small number of
the coefficients Cy; differ significantly from zero.

In the discrete time case t = 1,2,...,T we will use matrix notation. For
example, X will be a N x T matrix, with the signal z;(¢) in row i. S will
be an M x T matrix with underlying source s;(¢) in row j, and ® a K x T
matrix with atom ¢ (¢) in row &, so that

X = AS+¢ (3)
S = Cd (4)

We suppose that the coefficients (', are statistically independent random
variables with a probability density function (pdf) of an exponential type

pi(cik) ox e Pil(Cir) (5)

This kind of distribution is widely used for modeling sparsity [15, 18]. A
reasonable choice of h(c) may be

h(c) = |e|'/ 721 (6)

or its smooth approximations. In our computations we use a family of convex
smooth approximations to the absolute value

hi(e) = |e| —log(1 +[c]) (7)
ha(e) = Ah(e/A) (8)

where A is a proximity parameter: hy(c) — |c¢| when A — 0.

We also suppose a priory that the matrix A is uniformly distributed over
the range of interest, and that the noise £(¢) is a spatially and temporally
uncorrelated Gaussian process' with zero mean and variance o2.

!The assumption of the noise whiteness is for simplicity of exposition and can be easily
removed.



3 Maximum Posteriori Approach

We wish to maximize the posterior distribution P(A,C | X)

I%%XP(A,C | X) o IBaCXP(X | A,C)P(A)P(C) (9)

where P(X | A, C) is the conditional probability of observing X given A and
C'. Taking into account (3), (4), and the white Gaussian noise, we get
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P(X|AC) x I—Iexp—(Xilt

it

(10)

By the statistical independence of the coefficients Cj; and (5), the prior pdf
of C'is

P(C) o qexp(—ﬂjh(cjk)) (11)

If the prior pdf P(A) is uniform, it can be dropped? from (9). In this way
we are left with the problem

max P(X | A,C)P(C). (12)

By substituting (10) and (11) into (12), taking the logarithm, and inverting
the sign, we obtain the following optimization problem

1
ffll’%l@HAC@_X“%?LZﬁjh(Cjk) (13)

gk

where ||A||p = /X ;; A, is the Frobenius matrix norm.

One can consider this objective as a generalization of [18, 17] by incorpo-
rating the matrix @, or as a generalization of [7] by including the matrix A.
One problem with such a formulation is that it can lead to the degenerate
solution C' = 0 and A = co. We can overcome this difficulty in various ways.
The first approach is to force each row A; of the mixing matrix A to be
bounded in norm,

14, <1 i=1,...,N. (14)

2Otherwise, if P(A) is some other known function, we should use (9) directly.
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The second way is to restrict the norm of the rows C; from below
Il > 1 j=1, M, (15)

A third way is to reestimate the parameters 3; based on the current values
of C;. For example, this can be done using sampling variance as follows:
for a given function A(:) in the distribution (5), express the variance of Cjy
as a function fj,(3). An estimate of # can be obtained by applying the
corresponding inverse function to the sampling variance,

By = fi (KT 30 CR) (16)
k
In particular, when h(c) = ||, var(c) = 2372 and
A 2
= ——— 17
N WA (17)
Substituting A(-) and £ into (13), we obtain
_ 2 252k |Ciie
min ﬁ||AC’<I>—X||F+Z - (18)

J \/K_l Xk ngk

A remarkable property of this objective function is its invariance to rescaling
of the rows of C' when a corresponding inverse rescaling is applied to the
columns of A.

Computational experiments with more sources than mixtures In
our experiments we used the standard wavelet packet dictionary with the ba-
sic wavelet symmlet-8. When the signal length is 64 samples, this dictionary
consists of 448 atoms i.e. it is overcomplete by a factor of seven. Examples of
atoms and their images in the time-frequency phase plane [9, 16] are shown
in Figure 1. We used the ATOMIZER [8] and WAVELAB [4] MATLAB
packages for fast multiplication by ® and ®7.

We created three sparse sources (Figure 2, top), each composed of two or
three atoms. The first two sources have significant cross-correlation, equal to
0.34, which makes separation difficult for conventional methods. Two syn-
thetic sensor signals (Figure 2, center) were obtained as a linear mixture of
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Figure 1: Examples of atoms: time-frequency phase plane (left) and time plot
(right.)

the sources. In order to measure the accuracy of the separation, we nor-
malized the original sources with ||Sj||o = 1, and the estimated sources with
|Sj]|2 = 1. The error was then computed as

15 = Silla
1551l

Error =

-100% (19)

We tested two methods with this data. The first method used the objective
function (13) and the constraints (15), while the second method used the
objective function (18). As a tool for constrained optimization we used the
PBM method [3]. Unconstrained optimization was produced by the method
of conjugate gradients using the TOMLAB package [10]. The same tool was
used for internal unconstrained optimization in PBM.

In all the cases we used h,(-) defined by (7) and (8), with the param-
eter A = 0.01. Another parameter o2 = 0.0001. The resulting errors of the
source estimates were 0.09% and 0.02% by the first and the second method
respectively. The estimated sources are shown in the bottom three traces
of Figure 2. They are visually indistinguishable from the original sources,
shown in top three traces of Figure 2.
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Figure 2: Sources (top three), mixtures (center two), reconstructed sources (bot-
tom three), in both time-frequency phase plane (left) and time domain (right).

4 Equal number of sources and sensors: more
robust formulations

The main difficulty in a maximization problem like (13) is the bilinear term
AC®, which destroys the convexity of the objective function and makes con-
vergence unstable when optimization starts far from the solution. In this
section we consider more robust formulations for the case when the number
of sensors is equal to the number of sources, N = M, and the mixing matrix
is invertible W = A1

In the case when the noise is small and the matrix A is far from singular,



W X gives a reasonable estimate of the source signals S. Taking into account
(4), we obtain a least square term ||C® — W X||%, so the separation objective
may be written

o1
min —||C® — WX||7 +n ) Bih(Cjr) (20)
w,C 2 T
We also need to add a constraint, which enforces the non-singularity of W.
For example, we can restrict from below its minimal singular value 7, (W):

It can be shown, that in the noiseless case, 0 & 0, the problem (20)—(21) is
equivalent to the maximum posteriori formulation (13) with the constraint
||All2 < 1. Another possibility for ensuring the non-singularity of W is to
subtract K log|det W| from the objective

1
min —K log | det W[+ ZCO— WX[E+n T Bh(C) (22
’ Jk
When the noise is zero and ® is the identity matrix, we can substitute C' =
WX and obtain the Bell-Sejnowski Infomax objective [2]

min —K log|det W] + > Bih(WX);r) (23)

gk

Computational experiments with equal number of sources and sen-
sors We created two sparse sources (Figure 3, top) with strong cross-
correlation of 0.52. Separation, produced by minimization of the objective
function (22), gave an error of 0.23%. For comparison we tested the JADE
[6, 5], FastICA [12, 11] and Bell-Sejnowski Infomax [2, 1] algorithms on the
same signals. The Resulting relative errors (Figure 4) confirm the significant
superiority of the sparse decomposition approach.

5 Sequential Extraction of Sources via Quadratic
Programming

Let us ask what is the most “sparse” signal one can obtain by a linear com-
bination of the sensor signals s = w’ X. By sparsity, as before, we mean the

7
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Figure 3: Sources (top two), mixtures (center two), reconstructed sources (bottom
two), in both time-frequency phase plane (left) and time domain (right).

ability of the signal to be approximated by a linear combination of a small
number of dictionary elements ¢y

s d c sparse
This will lead us to the following objective:
1
mwin§||CT<P—wTX||%+/LZh(Ck), (24)
’C k

where the term Y, h(cx) may be considered as a penalty on non-sparsity. In
order to avoid the trivial solution of w = 0 and ¢ = 0, we need to add a
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Figure 4: Percent relative error of separation of the artificial sparse sources re-
covered by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Equation 22.

constraint that separates w from zero. It could be, for example,
2
Jwllz > 1, (25)

A similar constraint can be used as a tool to extract all the sources sequen-
tially: the new separation vector w’ should have a component of unit norm

in the subspace orthogonal to the previously extracted vectors w?, ..., w/~!
(1 =P w3 > 1, (26)
where P! is an orthogonal projector onto Span{w?, ..., w/ '}.

When h(ck) = |ex|, we can use the standard substitution

c = ct—c, ¢c">0,c¢c >0

+ ~
c = (Z) and (I):<—(I><P> ,
that transforms (24) and (26) into the following quadratic program

1 ~
min 5||éT<1> —w" X5+ pe'e

w,é
subject to:  [Jw|]>1,
é>0,

where e is a vector of ones.



6 Fast Solution in Non-overcomplete Dictio-
naries

In important applications, the sensor signals may have hundreds of channels
and hundreds of thousands of samples. This may make separation computa-
tionally difficult. Here we present an approach which compromises between
statistical and computational efficiency. In our experience this approach pro-
vides high quality of separation in reasonable time. Suppose the dictionary
is “complete”, i.e. the it forms a basis in the space of discrete signals. This
means that the matrix @ is square and non-singular. As examples of such a
dictionary one can think of the Fourier basis, Gabor basis, various wavelet-
related bases, etc. We can also obtain an “optimal” dictionary by learning
from given family of signals [15, 14, 18, 17].

Let us denote the dual basis
U=0o"! (27)
and suppose that coefficients of decomposition of the sources
C=S5v (28)

are sparse and statistically independent. This assumption is reasonable for
properly chosen dictionaries, although of course we would lose the advantages
of overcompleteness [15].

Let Y be the decomposition of the sensor signals
Y =XV (29)

Multiplying both sides of (3) by ¥ from the right and taking into account
(28) and (29), we obtain
Y =AC+ ¢, (30)

where ( is decomposition of the noise
(=€, (31)

In this paper we consider an “easy” situation, when ( is a white noise, that
requires orthogonality of . We can see that all the objective functions
from the sections 3-5 remain valid if we remove from them ® (substituting
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instead the identity matrix) and replace the sensor signals X by their de-
composition Y. For example, maximum posteriori objectives (13) and (18)
are transformed into

B 55140 = Y+ T () (32)
and o : 25 [yl
min T‘Q“AC—YHFJF;\/W (33)
The objective (22) becomes
win —K log | det W + 3|0~ WY} 4 n X Bh(C)  (3)

gk
In this case when the noise is zero, we can substitute C' = WY and obtain
the Bell-Sejnowski Infomax objective [2]

min —K log| det W] + > Bih((WY)r) (35)
gk

Also other known methods (for example, [13, 15]), which normally assume
sparsity of source signals, may be directly applied to the decomposition Y of
the sensor signals. This may be more efficient than the traditional approach,
and the reason is obvious: typically, a properly chosen decomposition gives
significantly higher sparsity than the raw signals had originally. Also, statis-
tical independence of the coefficients is a more reasonable assumption than
statistical independence of the raw signal samples.

Computational experiments with musical sound sources In our ex-
periments we artificially mixed seven 5-second fragments of musical sound
recordings taken from commercial digital audio CDs. Each of them included
40k samples after down-sampling by a factor of 5. (Figure 5).

The easiest way to perform sparse decomposition of such sources is to
compute a spectrogram, the coefficients of a time-windowed discrete Fourier
transform. (We used the function SPECGRAM from the MATLAB signal
processing toolbox with a time window of 1024 samples.) The sparsity of the
spectrogram coefficients (the histogram in Figure 6, right) is much higher
then the sparsity of the original signal (Figure 6, left)

11
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Figure 5: Separation of musical recordings taken from commercial digital audio
CDs (five second fragments.) Original sources (left); mixtures (center); separated
sources (right).

In this case Y (29) is a real matrix, with separate entries for the real and
imaginary components of each spectrogram coefficient of the sensor signals X.
We used the objective function (35) with §; = 1 and h,(+) defined by (7),(8)
with the parameter A = 10~*. Unconstrained minimization was performed
by a BFGS Quasi-Newton algorithm (MATLAB function FMINU.)

This algorithm separated the sources with a relative error of 0.67% for the
least well separated source (error computed according to (19).) We also ap-
plied the Bell-Sejnowski Infomax algorithm [2] implemented in [1] to the spec-
trogram coefficients Y of the sensor signals. Separation errors were slightly
larger: 0.9%.

For comparison we tested JADE [6, 5], FastIca [12, 11] and Bell-Sejnowski
Infomax algorithms on the same signals. Resulting relative errors (Figure 7)
confirm the significant (by a factor of more than 10) superiority of the sparse
decomposition approach.
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Figure 6: Histogram of sound source values (left) and spectrogram coefficients
(right), shown with linear y-scale (top), square root y-scale (center) and logarith-
mic y-scale (bottom).
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Figure 7: Percent relative error of separation of seven musical sources recov-
ered by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Infomax,
applied to the spectrogram coefficients, (5) BEGS minimization of the objec-
tive (35) with the spectrogram coefficients.
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7 Future research

We should mention an alternative to the maximum posteriori approach (12).
Considering the mixing matrix A as a parameter, we can estimate it by
maximizing the probability of the observed signal X

max [P(X | 4) = [ P(X | 4,0)P(C)dC

The integral over all possible coefficients C' may be approximated, for ex-
ample, by Monte-Carlo sampling or by a matching Gaussian, in the spirit
of [15, 14]. It would be interesting to compare this possibility to the other
methods presented in this paper.

Another important direction give us the problem of blind separation-
deconvolution of convolutive mixtures of signals (see for example [2].) In
this case the matrices A and W will have linear filters as an elements, and
multiplication by the element will mean convolution. Even in this matrix-of-
filters context most of the formulae in this paper remain valid.

8 Conclusions

In this paper we showed that the use of sparse decomposition in a correspond-
ing signal dictionary provides high-quality blind source separation. The max-
imum posteriori framework gives the most general approach, including the
situation of more sources than sensors. Faster and computationally robust
solutions are possible in the case of an equal number of sources and sensors.
We can also extract the sources sequentially using quadratic programming
with non-convex quadratic constraints. Finally, the fastest solution may be
obtained using non-overcomplete dictionaries. Our experiments with artifi-
cial signals and digitally mixed musical sounds demonstrate a high quality
of source separation, compared to other known techniques.
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