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Abstra
t

The blind sour
e separation problem is to extra
t the underlying

sour
e signals from a set of their linear mixtures, where the mixing

matrix is unknown. This situation is 
ommon, eg in a
ousti
s, ra-

dio, and medi
al signal pro
essing. We exploit the property of the

sour
es to have a sparse representation in a 
orresponding (possi-

bly over
omplete) signal di
tionary. Su
h a di
tionary may 
on-

sist of wavelets, wavelet pa
kets, et
., or be obtained by learning

from a given family of signals. Starting from the maximum poste-

riori framework, whi
h is appli
able to the 
ase of more sour
es

than mixtures, we derive a few other 
ategories of obje
tive fun
-

tions, whi
h provide faster and more robust 
omputations, when

there are an equal number of sour
es and mixtures. Our experi-

ments with arti�
ial signals and with musi
al sounds demonstrate

signi�
antly better separation than other known te
hniques.



1 Introdu
tion

We 
onsider the problem of blind separation of sour
e signals from a set of

their linear mixtures, in
luding the 
ase when the number of sour
es is larger

than the number of mixtures. This work 
an be 
onsidered a natural gener-

alization of the Bell-Sejnowski Infomax [2℄ and maximum posteriori [13, 15℄

methods of blind sour
e separation. We assume that the sour
e signals have a

sparse representation in a 
orresponding (possibly over
omplete) signal di
-

tionary. In this way independen
e and sparsity are not required from the

signals themselves, but rather from their de
omposition 
oeÆ
ients, whi
h is

more natural in many pra
ti
al 
ases. On the other hand our approa
h may

be 
onsidered an extension of basis pursuit [7℄ to the 
ase of signal mixtures.

This paper is organized as follows. Se
tion 2 gives the problem formu-

lation and assumptions. In Se
tion 3 we present the maximum posteriori

approa
h, whi
h is appli
able to the 
ase of more sour
es than mixtures.

In Se
tion 4 we derive another obje
tive fun
tion, whi
h provides more ro-

bust 
omputations when there are an equal number of sour
es and mixtures.

Se
tion 5 presents sequential sour
e extra
tion using quadrati
 programming

with non-
onvex quadrati
 
onstraints. Finally, in Se
tion 6 we derive a faster

method for non-over
omplete di
tionaries and demonstrate high-quality sep-

aration of syntheti
ally mixed musi
al sounds.

2 Problem Formulation and Assumptions

Let x(t) be an N -dimensional ve
tor of sensor signals whi
h is an instan-

taneous linear mixture of M unknown \independent" sour
es s(t), possibly


orrupted by additive noise �(t):

x(t) = As(t) + �(t) (1)

We will estimate the unknown mixing matrix of real numbers A (up to row

permutation and s
aling) and the sour
e signal s(t) (up to 
omponent per-

mutation and s
aling.)

We take advantage of the fa
t that many natural sour
es of signal have
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sparse representation in the proper signal di
tionary ':

s

i

(t) =

K

X

k=1

C

ik

'

k

(t) (2)

The fun
tions '

k

(t) are 
alled atoms or elements of the di
tionary. These

elements do not have to be linearly independent, and instead may form an

over
omplete di
tionary. Important examples are wavelet-related di
tionaries

(wavelet pa
kets, et
.) [7, 16℄. Sparsity means that only a small number of

the 
oeÆ
ients C

ik

di�er signi�
antly from zero.

In the dis
rete time 
ase t = 1; 2; : : : ; T we will use matrix notation. For

example, X will be a N � T matrix, with the signal x

i

(t) in row i. S will

be an M � T matrix with underlying sour
e s

j

(t) in row j, and � a K � T

matrix with atom '

k

(t) in row k, so that

X = AS + � (3)

S = C� (4)

We suppose that the 
oeÆ
ients C

ik

are statisti
ally independent random

variables with a probability density fun
tion (pdf) of an exponential type

p

i

(C

ik

) / e

��

i

h(C

ik

)

(5)

This kind of distribution is widely used for modeling sparsity [15, 18℄. A

reasonable 
hoi
e of h(
) may be

h(
) = j
j

1=



 � 1 (6)

or its smooth approximations. In our 
omputations we use a family of 
onvex

smooth approximations to the absolute value

h

1

(
) = j
j � log(1 + j
j) (7)

h

�

(
) = �h

1

(
=�) (8)

where � is a proximity parameter: h

�

(
)! j
j when �! 0.

We also suppose a priory that the matrix A is uniformly distributed over

the range of interest, and that the noise �(t) is a spatially and temporally

un
orrelated Gaussian pro
ess

1

with zero mean and varian
e �

2

.

1

The assumption of the noise whiteness is for simpli
ity of exposition and 
an be easily

removed.
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3 Maximum Posteriori Approa
h

We wish to maximize the posterior distribution P (A;C j X)

max

A;C

P (A;C j X) / max

A;C

P (X j A;C)P (A)P (C) (9)

where P (X j A;C) is the 
onditional probability of observing X given A and

C. Taking into a

ount (3), (4), and the white Gaussian noise, we get

P (X j A;C) /

Y

i;t

exp�

(X

it

� (AC�)

it

)

2

2�

2

(10)

By the statisti
al independen
e of the 
oeÆ
ients C

jk

and (5), the prior pdf

of C is

P (C) /

Y

j;k

exp(��

j

h(C

jk

)) (11)

If the prior pdf P (A) is uniform, it 
an be dropped

2

from (9). In this way

we are left with the problem

max

A;C

P (X j A;C)P (C): (12)

By substituting (10) and (11) into (12), taking the logarithm, and inverting

the sign, we obtain the following optimization problem

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j;k

�

j

h(C

jk

) (13)

where kAk

F

=

q

P

i;j

A

2

ij

is the Frobenius matrix norm.

One 
an 
onsider this obje
tive as a generalization of [18, 17℄ by in
orpo-

rating the matrix �, or as a generalization of [7℄ by in
luding the matrix A.

One problem with su
h a formulation is that it 
an lead to the degenerate

solution C = 0 and A =1. We 
an over
ome this diÆ
ulty in various ways.

The �rst approa
h is to for
e ea
h row A

i

of the mixing matrix A to be

bounded in norm,

kA

i

k � 1 i = 1; : : : ; N: (14)

2

Otherwise, if P (A) is some other known fun
tion, we should use (9) dire
tly.
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The se
ond way is to restri
t the norm of the rows C

j

from below

kC

j

k � 1 j = 1; : : : ;M: (15)

A third way is to reestimate the parameters �

j

based on the 
urrent values

of C

j

. For example, this 
an be done using sampling varian
e as follows:

for a given fun
tion h(�) in the distribution (5), express the varian
e of C

jk

as a fun
tion f

h

(�). An estimate of � 
an be obtained by applying the


orresponding inverse fun
tion to the sampling varian
e,

^

�

j

= f

�1

h

(K

�1

X

k

C

2

jk

) (16)

In parti
ular, when h(
) = j
j, var(
) = 2�

�2

and

^

�

j

=

2

q

K

�1

P

k

C

2

jk

(17)

Substituting h(�) and

^

� into (13), we obtain

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(18)

A remarkable property of this obje
tive fun
tion is its invarian
e to res
aling

of the rows of C when a 
orresponding inverse res
aling is applied to the


olumns of A.

Computational experiments with more sour
es than mixtures In

our experiments we used the standard wavelet pa
ket di
tionary with the ba-

si
 wavelet symmlet-8. When the signal length is 64 samples, this di
tionary


onsists of 448 atoms i.e. it is over
omplete by a fa
tor of seven. Examples of

atoms and their images in the time-frequen
y phase plane [9, 16℄ are shown

in Figure 1. We used the ATOMIZER [8℄ and WAVELAB [4℄ MATLAB

pa
kages for fast multipli
ation by � and �

T

.

We 
reated three sparse sour
es (Figure 2, top), ea
h 
omposed of two or

three atoms. The �rst two sour
es have signi�
ant 
ross-
orrelation, equal to

0.34, whi
h makes separation diÆ
ult for 
onventional methods. Two syn-

theti
 sensor signals (Figure 2, 
enter) were obtained as a linear mixture of
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Figure 1: Examples of atoms: time-frequen
y phase plane (left) and time plot

(right.)

the sour
es. In order to measure the a

ura
y of the separation, we nor-

malized the original sour
es with kS

j

k

2

= 1, and the estimated sour
es with

k

e

S

j

k

2

= 1. The error was then 
omputed as

Error =

k

e

S

j

� S

j

k

2

kS

j

k

2

� 100% (19)

We tested two methods with this data. The �rst method used the obje
tive

fun
tion (13) and the 
onstraints (15), while the se
ond method used the

obje
tive fun
tion (18). As a tool for 
onstrained optimization we used the

PBM method [3℄. Un
onstrained optimization was produ
ed by the method

of 
onjugate gradients using the TOMLAB pa
kage [10℄. The same tool was

used for internal un
onstrained optimization in PBM.

In all the 
ases we used h

�

(�) de�ned by (7) and (8), with the param-

eter � = 0:01. Another parameter �

2

= 0:0001. The resulting errors of the

sour
e estimates were 0.09% and 0.02% by the �rst and the se
ond method

respe
tively. The estimated sour
es are shown in the bottom three tra
es

of Figure 2. They are visually indistinguishable from the original sour
es,

shown in top three tra
es of Figure 2.
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Figure 2: Sour
es (top three), mixtures (
enter two), re
onstru
ted sour
es (bot-

tom three), in both time-frequen
y phase plane (left) and time domain (right).

4 Equal number of sour
es and sensors: more

robust formulations

The main diÆ
ulty in a maximization problem like (13) is the bilinear term

AC�, whi
h destroys the 
onvexity of the obje
tive fun
tion and makes 
on-

vergen
e unstable when optimization starts far from the solution. In this

se
tion we 
onsider more robust formulations for the 
ase when the number

of sensors is equal to the number of sour
es, N = M , and the mixing matrix

is invertible W = A

�1

.

In the 
ase when the noise is small and the matrix A is far from singular,
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WX gives a reasonable estimate of the sour
e signals S. Taking into a

ount

(4), we obtain a least square term kC��WXk

2

F

, so the separation obje
tive

may be written

min

W;C

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (20)

We also need to add a 
onstraint, whi
h enfor
es the non-singularity of W .

For example, we 
an restri
t from below its minimal singular value r

min

(W ):

r

min

(W ) � 1 (21)

It 
an be shown, that in the noiseless 
ase, � � 0, the problem (20){(21) is

equivalent to the maximum posteriori formulation (13) with the 
onstraint

kAk

2

� 1: Another possibility for ensuring the non-singularity of W is to

subtra
t K log j detW j from the obje
tive

min

W;C

�K log j detW j+

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (22)

When the noise is zero and � is the identity matrix, we 
an substitute C =

WX and obtain the Bell-Sejnowski Infomax obje
tive [2℄

min

W

�K log j detW j+

X

j;k

�

j

h((WX)

jk

) (23)

Computational experiments with equal number of sour
es and sen-

sors We 
reated two sparse sour
es (Figure 3, top) with strong 
ross-


orrelation of 0.52. Separation, produ
ed by minimization of the obje
tive

fun
tion (22), gave an error of 0.23%. For 
omparison we tested the JADE

[6, 5℄, FastICA [12, 11℄ and Bell-Sejnowski Infomax [2, 1℄ algorithms on the

same signals. The Resulting relative errors (Figure 4) 
on�rm the signi�
ant

superiority of the sparse de
omposition approa
h.

5 Sequential Extra
tion of Sour
es via Quadrati


Programming

Let us ask what is the most \sparse" signal one 
an obtain by a linear 
om-

bination of the sensor signals s = w

T

X. By sparsity, as before, we mean the
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Figure 3: Sour
es (top two), mixtures (
enter two), re
onstru
ted sour
es (bottom

two), in both time-frequen
y phase plane (left) and time domain (right).

ability of the signal to be approximated by a linear 
ombination of a small

number of di
tionary elements �

k

s � 


T

� ; 
 sparse

This will lead us to the following obje
tive:

min

w;


1

2

k


T

�� w

T

Xk

2

2

+ �

X

k

h(


k

); (24)

where the term

P

k

h(


k

) may be 
onsidered as a penalty on non-sparsity. In

order to avoid the trivial solution of w = 0 and 
 = 0, we need to add a
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    BS
Infomax

Fast
ICA

Equation
      22

(29%)

(57%)

(27%)

(0.2%)

Cardoso’s
   JADE

Figure 4: Per
ent relative error of separation of the arti�
ial sparse sour
es re-


overed by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Equation 22.


onstraint that separates w from zero. It 
ould be, for example,

kwk

2

2

� 1 ; (25)

A similar 
onstraint 
an be used as a tool to extra
t all the sour
es sequen-

tially: the new separation ve
tor w

j

should have a 
omponent of unit norm

in the subspa
e orthogonal to the previously extra
ted ve
tors w

1

; : : : ; w

j�1

k(I � P

j�1

)w

j

k

2

2

� 1 ; (26)

where P

j�1

is an orthogonal proje
tor onto Spanfw

1

; : : : ; w

j�1

g.

When h(


k

) = j


k

j, we 
an use the standard substitution


 = 


+

� 


�

; 


+

� 0 ; 


�

� 0


̂ =

 




+




�

!

and

^

� =

 

�

��

!

;

that transforms (24) and (26) into the following quadrati
 program

min

w;
̂

1

2

k
̂

T

^

�� w

T

Xk

2

2

+ �e

T


̂

subje
t to: kwk

2

2

� 1 ;


̂ � 0 ;

where e is a ve
tor of ones.
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6 Fast Solution in Non-over
omplete Di
tio-

naries

In important appli
ations, the sensor signals may have hundreds of 
hannels

and hundreds of thousands of samples. This may make separation 
omputa-

tionally diÆ
ult. Here we present an approa
h whi
h 
ompromises between

statisti
al and 
omputational eÆ
ien
y. In our experien
e this approa
h pro-

vides high quality of separation in reasonable time. Suppose the di
tionary

is \
omplete", i.e. the it forms a basis in the spa
e of dis
rete signals. This

means that the matrix � is square and non-singular. As examples of su
h a

di
tionary one 
an think of the Fourier basis, Gabor basis, various wavelet-

related bases, et
. We 
an also obtain an \optimal" di
tionary by learning

from given family of signals [15, 14, 18, 17℄.

Let us denote the dual basis

	 = �

�1

(27)

and suppose that 
oeÆ
ients of de
omposition of the sour
es

C = S	 (28)

are sparse and statisti
ally independent. This assumption is reasonable for

properly 
hosen di
tionaries, although of 
ourse we would lose the advantages

of over
ompleteness [15℄.

Let Y be the de
omposition of the sensor signals

Y = X	 (29)

Multiplying both sides of (3) by 	 from the right and taking into a

ount

(28) and (29), we obtain

Y = AC + � ; (30)

where � is de
omposition of the noise

� = �	 : (31)

In this paper we 
onsider an \easy" situation, when � is a white noise, that

requires orthogonality of 	. We 
an see that all the obje
tive fun
tions

from the se
tions 3{5 remain valid if we remove from them � (substituting
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instead the identity matrix) and repla
e the sensor signals X by their de-


omposition Y . For example, maximum posteriori obje
tives (13) and (18)

are transformed into

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j;k

�

j

h(C

jk

) (32)

and

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(33)

The obje
tive (22) be
omes

min

W;C

�K log j detW j+

1

2

kC �WY k

2

F

+ �

X

j;k

�

j

h(C

jk

) (34)

In this 
ase when the noise is zero, we 
an substitute C = WY and obtain

the Bell-Sejnowski Infomax obje
tive [2℄

min

W

�K log j detW j+

X

j;k

�

j

h((WY )

jk

) (35)

Also other known methods (for example, [13, 15℄), whi
h normally assume

sparsity of sour
e signals, may be dire
tly applied to the de
omposition Y of

the sensor signals. This may be more eÆ
ient than the traditional approa
h,

and the reason is obvious: typi
ally, a properly 
hosen de
omposition gives

signi�
antly higher sparsity than the raw signals had originally. Also, statis-

ti
al independen
e of the 
oeÆ
ients is a more reasonable assumption than

statisti
al independen
e of the raw signal samples.

Computational experiments with musi
al sound sour
es In our ex-

periments we arti�
ially mixed seven 5-se
ond fragments of musi
al sound

re
ordings taken from 
ommer
ial digital audio CDs. Ea
h of them in
luded

40k samples after down-sampling by a fa
tor of 5. (Figure 5).

The easiest way to perform sparse de
omposition of su
h sour
es is to


ompute a spe
trogram, the 
oeÆ
ients of a time-windowed dis
rete Fourier

transform. (We used the fun
tion SPECGRAM from the MATLAB signal

pro
essing toolbox with a time window of 1024 samples.) The sparsity of the

spe
trogram 
oeÆ
ients (the histogram in Figure 6, right) is mu
h higher

then the sparsity of the original signal (Figure 6, left)
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Figure 5: Separation of musi
al re
ordings taken from 
ommer
ial digital audio

CDs (�ve se
ond fragments.) Original sour
es (left); mixtures (
enter); separated

sour
es (right).

In this 
ase Y (29) is a real matrix, with separate entries for the real and

imaginary 
omponents of ea
h spe
trogram 
oeÆ
ient of the sensor signalsX.

We used the obje
tive fun
tion (35) with �

j

= 1 and h

�

(�) de�ned by (7),(8)

with the parameter � = 10

�4

. Un
onstrained minimization was performed

by a BFGS Quasi-Newton algorithm (MATLAB fun
tion FMINU.)

This algorithm separated the sour
es with a relative error of 0.67% for the

least well separated sour
e (error 
omputed a

ording to (19).) We also ap-

plied the Bell-Sejnowski Infomax algorithm [2℄ implemented in [1℄ to the spe
-

trogram 
oeÆ
ients Y of the sensor signals. Separation errors were slightly

larger: 0.9%.

For 
omparison we tested JADE [6, 5℄, FastI
a [12, 11℄ and Bell-Sejnowski

Infomax algorithms on the same signals. Resulting relative errors (Figure 7)


on�rm the signi�
ant (by a fa
tor of more than 10) superiority of the sparse

de
omposition approa
h.
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Figure 6: Histogram of sound sour
e values (left) and spe
trogram 
oeÆ
ients

(right), shown with linear y-s
ale (top), square root y-s
ale (
enter) and logarith-

mi
 y-s
ale (bottom).

Cardoso’s
   JADE

Fast
ICA

   BS
Infomax

Spect−
Infomax

Spect−
BFGS

(8.8%) (8.6%)

(7.1%)

(0.9%) (0.67%)

Figure 7: Per
ent relative error of separation of seven musi
al sour
es re
ov-

ered by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Infomax,

applied to the spe
trogram 
oeÆ
ients, (5) BFGS minimization of the obje
-

tive (35) with the spe
trogram 
oeÆ
ients.
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7 Future resear
h

We should mention an alternative to the maximum posteriori approa
h (12).

Considering the mixing matrix A as a parameter, we 
an estimate it by

maximizing the probability of the observed signal X

max

A

�

P (X j A) =

Z

P (X j A;C)P (C)dC

�

The integral over all possible 
oeÆ
ients C may be approximated, for ex-

ample, by Monte-Carlo sampling or by a mat
hing Gaussian, in the spirit

of [15, 14℄. It would be interesting to 
ompare this possibility to the other

methods presented in this paper.

Another important dire
tion give us the problem of blind separation-

de
onvolution of 
onvolutive mixtures of signals (see for example [2℄.) In

this 
ase the matri
es A and W will have linear �lters as an elements, and

multipli
ation by the element will mean 
onvolution. Even in this matrix-of-

�lters 
ontext most of the formulae in this paper remain valid.

8 Con
lusions

In this paper we showed that the use of sparse de
omposition in a 
orrespond-

ing signal di
tionary provides high-quality blind sour
e separation. The max-

imum posteriori framework gives the most general approa
h, in
luding the

situation of more sour
es than sensors. Faster and 
omputationally robust

solutions are possible in the 
ase of an equal number of sour
es and sensors.

We 
an also extra
t the sour
es sequentially using quadrati
 programming

with non-
onvex quadrati
 
onstraints. Finally, the fastest solution may be

obtained using non-over
omplete di
tionaries. Our experiments with arti�-


ial signals and digitally mixed musi
al sounds demonstrate a high quality

of sour
e separation, 
ompared to other known te
hniques.
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