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Abstract
When a sensory stimulus is encoded in a lossy fashion for ef-
ficient transmission, there are necessarily tradeoffs between
the represented fidelity of various aspects of the input pat-
tern. In the model of attention presented here, a top-down
signal informs the encoder of these tradeoffs. Given an en-
semble of input patterns and tradeoff requirements, our sys-
tem can learn to encode its inputs optimally. This general
model is instantiated in a simple network: an autoencoder
with a bottleneck, innervated by a top-down attentional sig-
nal, trained using backpropagation. The only information the
encoder receives concerning the semantics of the top-down
attentional signal is from the optimization criterion, which
penalizes the system more heavily for errors made near a
simple attentional spotlight. The modulation of neural activ-
ity learned by this model qualitatively matches that measured
in animals during covert visual attention tasks.

Integrating Attention & Coding
This theory of top-down attentional modulation builds upon
optimal sensory encoding [1] by adding a top-down signal
correlated with changing tradeoffs between coding fidelity
of various features. Optimal codes can often be found an-
alytically, but learning algorithms provide a more general
approach which can accommodate the top-down attentional
signal by modulating the objective function. Here we built a
very simple model in order to account for a particular well-
controlled experimental phenomenon involving spatial atten-
tion in the visual modality [2]. However, by avoiding analyt-
ical methods for finding the optimal code, the model can be
extended to other sorts of tradeoffs in coding fidelity, such as
pop-out, non-spatial attention, and non-visual modalities.

Architecture
•Auto-associative

with bottleneck.

• 256:20:10:20:256

• INPUT
16×16 pixels and
attentional signal.

•OUTPUT
16×16 pixels.

•Layers fully connected in a feedforward fashion.
•Additional attentional input to each layer.
•Hyperbolic tangent activation functions.
•Decoder used for optimization—not part of the brain!

Training
•Trained as a single system (encoder/decoder).
•Backpropagation with error measure E = ∑i ci (yi−di)

2

ci : intensity of the attentional “spotlight” at location i.
yi : output at location i.
di : pixel i target output; di = inputi.

•Error weighting
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ci = 1/(1+ k2||i−a||2)
i : position on the plane.
a : attentional input

(center of the “spotlight”).
k : width parameter.

•All connections plastic during learning.
• 2,000 image (low freq. colored noise) training set.
•Center of attention uniformly distributed.
•Gaussian noise added to bottleneck units during training.

Results: Reconstruction
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Reconstruction. One input pattern, four different attentional states
as indicated by the dashed circles. The error is the absolute intensity
difference between input and output.

The error inside the dashed circles is smaller than outside, i.e.
the reconstruction is better in attended locations.

SIGN OF THE DIFFERENCE IN PERFORMANCE
BETWEEN PEAKED AND FLAT WEIGHTINGS

Flat has lower error Peaked has lower error
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Comparison with flat error weighting. The performance differ-
ence shows that resources are redistributed.

Results: Modulation of Activity
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Activation of one bottleneck unit when attention is di-
rected to left or right. Stimuli were created by combining
halves of excitatory/inhibitory stimuli, as indicated by +/–.
The dashed ellipse indicates the attended location.

Excitatory and inhibitory stimuli (with respect to the acti-
vation of each unit in the bottleneck) were found using the
reverse correlation technique.

Clear modulation of the activation is observed depending
on the top-down attentional signal.

Stimulus changes in unattended locations produce
smaller modulation in activation than changes in at-
tended locations.
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Attentional modulation of unit activation. Average (over
bottleneck units) change in activation when attention is
shifted from right to left. Standard error also shown.

The stimuli consist of combinations of excitatory and
inhibitory halves as indicated by the + and – signs. Note
that the stimuli are different depending on the unit being
evaluated.

All units show consistent modulation of their activity de-
pending on the attentional state.

Discussion
The now-dominant account of low-level sensory processing
posits that the nervous system encodes the sensory stimuli
so as to produce internal representations which are optimal
according to an appropriate information-theoretic measure.
Detailed theories in this class have accounted for various
previously mysterious properties of receptive fields [3]. One
property of these models is that information theory takes no
account of semantics, and consequently there are often many
optimal codes, differing in which features of the sensory data
are represented and which are discarded. This symmetry is
broken in an ad-hoc fashion, by using a lower bound on the
actual efficiency of the code. For instance, in a visual modal-
ity this lower bound might consist of reconstruction fidelity,
with errors in each pixel weighted identically.

We instead break this symmetry by providing a top-down
“semantics” signal which allows the encoder to change its
representation so as to choose a code which is optimal not
only in information-theoretic terms, but also in allocation of
representational resources to features of current importance.
This top-down signal changes with time, and the representa-
tion of the same input will in general change with it, giving
rise to top-down attentional modulation of internal features.

Conclusions
•Attentional modulation integrated into information-

theoretic account of receptive fields.

• Special architectural treatment of top-down modulatory
signals is unnecessary.

•Effect of top-down attentional modulation can be learned.

•Modulation matches that observed in animal experiments.

•Applicable to pop-up, non-spatial attention, and across
modalities.
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