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Abstract. Iterative gradient methods like Levenberg-Marquardt (LM) are in widespread use
for source localization from electroencephalographic (EEG) and magnetoencephalographic
(MEG) signals. Unfortunately LM depends sensitively on the initial guess, necessitating
repeated runs. This, combined with LM’s high per-step cost, makes its computational burden
quite high. To reduce this burden, we trained a multilayer perceptron (MLP) as a real-time
localizer. We used an analytical model of quasistatic electromagnetic propagation through a
spherical head to map randomly chosen dipoles to sensor activities according to the sensor
geometry of a 4D Neuroimaging Neuromag-122 MEG system, and trained a MLP to invert
this mapping in the absence of noise or in the presence of various sorts of noise such as white
Gaussian noise, correlated noise, or real brain noise. A MLP structure was chosen to trade
off computation and accuracy. This MLP was trained four times, with each type of noise. We
measured the effects of initial guesses on LM performance, which motivated a hybrid MLP-
start-LM method, in which the trained MLP initializes LM. We also compared the localization
performance of LM, MLPs, and hybrid MLP-start-LMs for realistic brain signals. Trained
MLPs are much faster than other methods, while the hybrid MLP-start-LMs are faster and
more accurate than fixed-4-start-LM. In particular, the hybrid MLP-start-LM initialized by a
MLP trained with the real brain noise dataset is 60 times faster and is comparable in accuracy
to random-20-start-LM, and this hybrid system (localization error: 0.28 cm, computation time:
36 ms) shows almost as good performance as optimal-1-start-LM (localization error: 0.23 cm,
computation time: 22 ms), which initializes LM with the correct dipole location. MLPs trained
with noise perform better than the MLP trained without noise, and the MLP trained with real
brain noise is almost as good an initial guessor for LM as the correct dipole location.
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1. Introduction

Source localization using EEG and MEG signals is important in medical diagnosis of
conditions like epilepsy, in surgical planning, and in neuroscience research. The goal of
this localization is to identify electrically active brain regions, which emit signals measured
by EEG and MEG. There are a number of popular localization methods (Haméaldinen et al.,
1993) most of which assume a dipolar source. The approach taken by most methods to solve
the dipole source localization problem is:

e Calculate the sensor activations B, (x) for dipole parameters x through a forward model.

e Calculate the cost function c(x), a measure of the difference between the measured
sensor activations B,,, and the calculated sensor activations,

c(x) = |B.(x) — B[
e Adjust the dipole parameters x in order to reduce c¢(x).
e Repeat to convergence.

Gradient methods, which calculate the gradient Vic(x) in choosing a change to x, seem
superior in terms of accuracy and computational burden (Press et al., 1988).

However, gradient methods require both a differentiable forward model and an initial
guess. As we shall see, the efficiency and accuracy of the most popular gradient method
for this problem, LM (Levenberg, 1944; Marquardt, 1963), depends sensitively on the initial
guess. There is therefore motivation to build faster and more accurate source localizers. This
is particularly important for our real time MEG brain-computer interface system, as we need
to localize BSS-separated components in real time.

Since it is easy to create synthetic data consisting of pairs of corresponding dipole
locations and sensor signals, it is tempting to train a universal approximator to solve the
inverse problem directly, i.e. to map sensor signals directly to the dipole location. The
multilayer perceptron (MLP) of Rumelhart et al. (1986) has been popular for this purpose.
MLPs were first used for EEG dipole source localization and presented as feasible source
localizers by Abeyratne et al. (1991), and a MLP structure composed of six separate networks
was later used for EEG dipole localization by Zhang et al. (1998). Kinouchi et al. (1996) first
used MLPs for MEG source localization by training on a noise-free dataset of near-surface
dipoles, and Yuasa et al. (1998) studied the two-dipole case for EEG dipole source localization
while restricting each source dipole to a small region. Hoey et al. (2000) investigated EEG
measurements for both spherical and realistic head models, trained on a randomly generated
noise-free dataset, and presented a comparison between a MLP and an iterative method for
localization with noisy signals at three fixed dipole locations. Sun and Sclabassi (2000)
adapted a MLP to calculate forward EEG solutions for a spheroidal head model from simple
EEG solutions for a spherical head model. Recently, Kamijo et al. (2001) proposed an
integrated approach to EEG dipole source localization in which a MLP trained with noise-
free data is used as an initializer for Powell’s method.

The human skull phantom study of Leahy et al. (1998) shows that the fitted spherical
head model for MEG localization is slightly inferior in accuracy to the realistic head model
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numerically calculated by a boundary element method (BEM). In forward calculation, a
spherical head model has some advantages: it is more easily implemented, a forward
calculation through the model is much faster, and the model parameters can be fit to a
subject much more easily. Despite its inferiority in terms of localization accuracy, we use
a spherical head model in this work.: We train a MLP to localize dipoles from noisy MEG
measurements for a spherical head, and measure the efficacy of the resulting network under a
variety of conditions. In Section 2 the forward model and noise model are explained in detail.
Section 3 explores the tradeoff between accuracy and computation time in terms of MLP size,
and present MLP training and learning curves for various datasets. Section 3 continues by
exploring how S/N and other system parameters affect localization accuracy. The effects of
initial guesses on the performance of LM are simulated in Section 4, and Section 5 compares
the performance of LM, MLP and hybrid MLP-start-LM. We conclude that MLPs can serve
as real-time MEG localizers, MLPs should be trained with noise, and the MLP trained with
real brain noise is almost as good an initial guessor for LM as the correct dipole location.

2. Synthetic data

The synthetic data used in our experiments consisted of corresponding pairs of dipole
locations and sensor activations, as generated by our forward model. Given a dipole
location and a set of sensor activations, the minimum error dipole moment can be calculated
analytically (see Section 4). Therefore, although the dipoles used in generating the data set
have both location and moment, we discarded the moment in all the experiments below.

We made two datasets, one for training and the other for testing. Dipoles in the
training and testing sets were drawn uniformly from truncated spherical regions, as shown
in Figure 1. Their moments were drawn uniformly from vectors of strength < 100 nAm. The
corresponding sensor activations were calculated by adding the results of a forward model
and a noise model. To allow the network to interpolate rather than extrapolate, thus improving
performance, the training set used dipoles from the larger region, while the test set contained
only dipoles from the smaller inner region.

2.1. Forward model

We used a standard analytic forward model of quasistatic electromagnetic propagation in
a spherical head (Sarvas, 1987; Mosher et al., 1999), with the sensor geometry of a 4D

1 This work could be easily extended to a more realistic forward model. One can expect that a more complex
forward model leads to more local optima, and can therefore degrade the performance of gradient-based methods.
However, it should not much affect the performance of a trained MLP. For this reason, we would expect a more
sophisticated head model to give a comparatively greater advantage to the MLP-based approach advocated in
this paper. For realistic volume conductors algorithms like seed-based Simplex are common. Using the MLP to
get an initial guess does not require optimal accuracy, and we expect a spherical approximation for the training
of the MLP to be sufficient for this application.
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where x and Q denote a source dipole location vector and a source dipole moment vector,
respectively. The vectors x! and x2 denote the positions of the centers of the first and second
coils of s-th gradiometer sensor, and r, denotes the orientation vector of the s-th sensor.

Bs(x, Q) is the sensor activation of s-th sensor through the forward model, and 1, is the
permeability constant of air.
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2.2. Noise model

For single-trial data, the sensors in MEG systems have poor S/N ratios because MEG data
is strongly contaminated not only by intrinsic sensor noise, but also by external fields, fields
generated by various parts of the body (heart, eye muscles, retina), and signals from parts of
the brain not under study. Blind source separation of MEG data can drastically improve the
situation by segregating noise from signal (Vigario et al., 1998; Tang, Pearlmutter, Zibulevsky
and Carter, 2000), and the sensor attenuation vectors of the BSS-separated components can
be well localized to equivalent current dipoles (Tang, Phung, Pearlmutter and Christner, 2000;
Tang et al., 2002). However, the recovered field maps can be quite noisy, and conventional
localization techniques require manual interaction.

In order to compare the performance of various localizers, we need a dataset for which
we know the ground truth, but which contains the sorts of noise encountered in actual
MEG recordings. To this end, we created three noise processes with which to additively
contaminate synthetic sensor readings (Kwon et al., 2000). These are: white Gaussian noise,
correlated noise, and real brain noise. By using a variety of noise models, we achieve a rough
measurement of the robustness of the system to a mismatch between the noise model used
in training and the noise encountered in testing. The white Gaussian noise is generated by
simply drawing a zero mean Gaussian-distributed random number for each sensor. Correlated
noise is made using the method of Lutkenhtner (1994):

e Distribute 871 dipoles uniformly on a spherical surface, with dipole moments drawn
from a zero-mean spherical Gaussian.

e Calculate a sensor activation through the analytic forward model for each dipole for each
sensor and sum over all dipoles at each sensor.

e Scale the resultant sensor activation vector to yield a suitable RMS power.

Real brain noise was taken from MEG recordings during periods in which the brain region
of interest in the experiment was quiescent. These signals were not averaged. The real brain
noise has an RMS power P™ of roughly 50-100 fT/cm. We measured the S/N ratio of a dataset
using the ratios of the powers in the signal and the noise: S/N (in dB) = 10log,, P*/ P™ where
P is the RMS (square root of mean square) of the sensor readings from the dipole and P" is
the RMS power of the sensor readings from the noise.

The noisy datasets were made by adding noise to synthetic sensor activations generated
by the forward model. Exemplars whose resulting S/N ratio was under 0 dB were rejected.
Real brain noise taken from MEG recordings was added without scaling, while the white
Gaussian noise and the correlated noise were scaled to make the RMS power of the noise
equal to that of the real brain noise.

3. Multilayer Perceptron

It is well known that a MLP with one or more hidden layers is a universal approximator
(Hornik et al., 1989). As in Hoey et al. (2000), our experiments showed that a MLP with two
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Figure 2. Training datasets were trained in this MLP structure.

hidden layers was superior to a MLP with one hidden layer, and for this reason we used a MLP
with two hidden layers. The MLP charged with approximating the inverse mapping (Figure 2)
had an input layer of 122 units, one for each sensor, two hidden layers with V; and N, units
respectively, and an output layer of three units representing the dipole location (x,y, z). The
output units had linear activation functions, while the hidden units had hyperbolic tangent
activation functions to accelerate training (LeCun et al., 1991). All units had bias inputs,
adjacent layers were fully connected, and there were no cut-through connections.

Input data is usually preprocessed to improve the performance, and output data is scaled
and translated into the dynamic range of the output unit activation function to avoid driving the
weights of the network to infinity or driving the hidden neurons to saturation (Haykin, 1994).
The 122 MEG sensor activations were scaled so that the RMS value was 0.5. Dipole location
parameters were scaled to lie in the range +0.8. The network weights were initialized with
uniformly distributed random values between +0.1. Backpropagation was used to calculate
the gradient, and online stochastic gradient decent for the optimization. No momentum was
used, and the learning rate was chosen empirically. Sometimes this procedure is referred to as
vanilla backpropagation.

3.1. MLP structural optimization

Beginning with intuitions drawn from the explorations of suitable numbers of hidden units
by Hoey et al. (2000) for EEG localization, we empirically measured the tradeoff between
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Figure 3. Mean localization error versus calculation time, as a parametric function of MLP
structure. A noise-free synthetic dataset was used for training.

accuracy and computation time. Generalization was not a serious consideration, since training
sets of arbitrary size could be easily constructed: our training sets ranged from 5 000-20 000,
as circumstances dictated.

For practical reasons, we constrained our experiments to networks with no more than
110 hidden units in either hidden layer. We varied the number of hidden units in each layer
from 10 to 110, in steps of 10, with N; > N,. Each MLP was trained with a noise-free
training dataset of 5000 training exemplars, and the mean localization error for a noise-free
training dataset of 5000 was measured after 500 epochs, where in each epoch all exemplars
in the training dataset are presented once. Training each network took up to two hours on
an 800 MHz AMD Athlon computer. For each size, five runs were performed and the errors
averaged. The calculation time was measured in terms of equivalent additions for a forward
pass, i.e. a localization. The number of equivalent additions per multiplication and hyperbolic
tangent were about 3 and 33 respectively, as measured on the above CPU. The equivalent
floating points additions for a pass through the 122—/N;—N,—3 MLP structure was therefore
(122N7 + N1 Ny + 3N3) + 3(N1 Ny + 123N; + 4N, + 3) + 33(N1 + Na).

Figure 3 shows average localization error for training vs. calculation time for a
localization. Each point in the figure describes a different network architecture. Increasing
the computation reduces the localization error. The accuracy levels off after a while, probably
due to incomplete convergence of the network training. From this result we choose a MLP
size of 122-60-30-3, as indicted in Figure 3. This is the most accurate MLP among those
having computation time less than 40 000 additions, which takes less than one hour to train.
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Table 1. Distribution of S/N for the 4 500 testing patterns

Number of
S/N (dB) patterns Frequency (%)
0-1 892 19.82
1-2 806 17.91
2-3 824 18.31
3-4 627 13.93
4-5 538 11.96
5-6 381 8.47
6-7 230 511
7-8 118 2.62
8-9 53 1.18
9-10 23 0.51
>10 8 0.18

3.2. Train of MLP and localization results

The larger the training dataset, the better the generalization. In our work, we extracted
real noise from an actual MEG recording for one subject, and the number of extracted
noise patterns was therefore limited to about 25000. For this reason we constructed four
training datasets, each with 20 000 exemplars, differing only in the type of noise: none, white
Gaussian, correlated, and real brain (Section 2.2). We always tested using the testing dataset
consisting of 4 500 patterns contaminated by real brain noise. As described in Section 2, the
S/N ratio was controlled by scaling additive noise so that the S/N ratio distributions for white
Gaussian noise and correlated noise datasets matched the real brain noise dataset. The S/N
ratio distributions for the testing dataset are shown in Table 1.

We used 500 epochs which took about four hours on an 800 MHz AMD Athlon to train
a network of the selected architecture on a noisy dataset. Figure 4 shows the training and
testing curves for our four cases: none, white Gaussian, correlated, and real brain noise. The
noise-free dataset was optimized well, but even the noisiest dataset lead to less than 0.9 cm
mean localization error. In terms of mean localization error for the testing dataset, the real
brain noise is the most accurate, the white Gaussian noise was slightly more accurate than
the correlated noise, and the noise-free was the worst. Obviously, the closer the training
dataset was to the testing dataset, the better was the performance. The localization errors for
4500 testing patterns of four trained MLPs, trained with various sorts of noise, are shown
as a function of S/N in Figure 5. The MLP trained with real brain noise showed the best
performance for low S/N ratio signals among the four systems, while all are comparable in
accuracy at high S/N ratios. In conclusion, these results show that the MLP trained with a
noisy dataset showed better performance than the MLP trained with the noise free dataset,
while the MLP trained with real brain noise was the best.
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Figure 4. Mean localization error versus epoch for training of 20 000 exemplars with various
type of noise: none, white Gaussian, correlated, and real brain. In all cases, testing used 4 500
patterns with real brain noise.

4.5 N \
noise—free =~ ——
4t correlated noise ——
white noise —a—
€ 35- brain noise —x—
E3
5 3 1
i
§ %%/ ]
No2r 1
=
S 15+ -
S 1
c
S 1r 2
=
05 N
0 | | | | |
0 2 4 8 10

6
S/N (dB)

Figure 5. Mean localization error versus S/N for four MLPs trained with various training
datasets: noise-free, white Gaussian noise, correlated noise, and real brain noise. Localization
was performed for 4 500 real brain noisy signals.
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3.3. Localization performance of MLP over various regions

We investigated localization error distributions over various regions of interest. We considered
two cross sections (coronal and saggital views), and these were divided into 36 and 28
regions, respectively, as shown in Figure 6. For each region, 100 real brain noise signals
were constructed in the same way as the real brain noise dataset. A dipole localization
was performed using the MLP trained with real brain noise and we calculated the average
localization error for each region. Figure 6 shows the localization error distribution over the
two cross sections. In general, dipoles closer to sensor surface were better localized.

4. Effect of theinitial guesson LM L ocalization

To see how the initial guess affects the LM localizer, we measured the localization
performance of LM as a function of the distance from the initial dipole location to the actual
location. The initial guess was chosen randomly on a sphere of radius d centered on the target.
For each S/N ratio, 300 correlated noisy patterns were created. The S/N ranged from 0-11 dB,
and the distance d from 0-6 cm in steps of 1 cm. For each sensor activation and initial guess,
LM finds the dipole parameters that minimize a quadratic function (Hamél&inen et al., 1993)
of the difference between the predicted and input sensor activations,

c(x) = [|B(x, Q(x)) — Bnl[5-»
where ||v||4 = v Av. The 122-element vectors B,, and B(x, Q(x)) represent the measured
sensor activations, and sensor activations predicted by the forward model, respectively. Since

B(x,Q) is linear in Q, that is, B(x, Q) = K(x) Q, the dipole moment vector Q can be
expressed by the least square method as:

Q(x) = (K(x)"K(x))'K(x)" By

where K(x) is the kernel of a spherical head model (Mosher et al., 1999) and ¥ is the noise
covariance matrix, which is an identity matrix for spherical zero mean unit variance Gaussian
noise. If the noise is known, the covariance matrix can be easily calculated. However the noise
is generally unknown, so people often assume a spherical covariance matrix. Alternatively,
one can measure the sensor activations before stimulation or long after stimulation and
calculate the covariance matrix from those measurements. Since both of these techniques
are popular, we simulate each. Figure 7 shows the mean localization error for 300 test sets of
varying S/N, for both spherical and measured covariance matrices. Figure 7 shows that the
closer the initial guess, the better the performance, under all tested covariance assumptions.

Figure 8 shows the mean localization error for all 3300 activations with various S/N as
the distance between the target and the initial guess is varied. Figure 8 tells us that with a
good initial guess the measured covariance yields much better localization performance, but
at the expense of performance when the initial guess is further from the target.

These experiments show that the localization of signals having high S/N ratios shows
a larger dependence on the initial guess as the initial guess is moved away from the target!
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Figure 7. Mean localization error of 1-start-LM as a function of S/N at varying distances
d between the initial guess and the actual source dipole. Left: spherical covariance matrix.
Right: measured covariance matrix.
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Figure 8. Localization error versus distance d between LM using spherical covariance and
LM using measured covariance. S/N ranges from 0-11 dB.

One can attempt to compensate for this effect by trying multiple restarts, yielding an n-start-
LM algorithm. Localization performance of this method could level out quickly, with the
randomly chosen initial guesses at about n» = 20, as shown in Table 2.

These results motivated us to construct a hybrid system in which the MLP’s output is
used as the initial guess for LM. As we shall see in the next section, this MLP-start-LM
performs very well indeed.

5. Compar ative Performance: LM, MLP, MLP-start-L M

For the comparison between the MLP and the hybrid system, LM was used in three ways.
First, LM was tuned for good performance using four re-starts at the fixed initial points
(0.,—6.9282,1.), (—6.,3.4641,1.), (6.,3.4641,1.), and (0.01,0.01,6.1962), in units of cm.
We call this system “fixed-4-start-LM.” Second, LM was restarted with »n random initial
guesses, for “random-n-start-LM.” We checked how many re-starts of LM are needed to
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Figure 9. Mean localization error versus S/N. Each of fixed-4-start-LM, optimal-1-start-LM,
MLP, and MLP-start-LM were tested on 4500 dipole signals contaminated with real brain
noise. The same MLP, trained with the real brain noise dataset, was used for both the MLP
curve and the MLP-start-LM curve.

match the accuracy of the hybrid system. To match the hybrid system with a MLP trained
with real brain noise, over 20 restarts of random-n-start-LM were required. Finally, we used
the known exact dipole source location as the starting point, for “optimal-1-start-LM.” For all
three LM systems, the covariance matrix was calculated from real brain noise and used in the
LM error measure.

Each of the MLP localizers from Section 3 was used as an LM initializer, for four variant
MLP-start-LM localizers. The performance of three LM systems, all four MLP localization
systems trained with various sorts of noise, and their hybrid systems, is shown in Table 2. With
real brain noise, our MLP is the fastest: about fifteen hundred times faster than fixed-4-start-
LM to match accuracies. Our hybrid MLP-start-LM is about four times more accurate and
thirteen times faster than fixed-4-start-LM, while it is only slightly slower and less accurate
than optimal-1-start-LM. Figure 9 shows localization performance as a function of S/N for
fixed-4-start-LM, optimal-1-start-LM, the MLP trained with real brain noise, and its hybrid
system. Optimal-1-start-LM shows the best localization performance across the whole range
of S/N, and the hybrid system shows almost the same performance as the optimal-1-start-L M,
while the trained MLP is more robust to noise than fixed-4-start-LM.

Table 2 shows that more than 20 random trials of LM were needed to match the
accuracy of MLP-start-LM with real brain noise, so one might expect MLP-start-LM with
real brain noise to be about twenty times faster than random-20-start-LM, and about four
times faster than fixed-4-start-LM. However, MLP-start-LM is in fact about sixty times faster
than random-20-start-LM, and about thirteen times faster than fixed-4-start-LM. The reason is
that the initial guess of MLP-start-LM is closer to the point of convergence, so fewer iterations
of LM are needed.
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Table 2. Comparison of performance on real brain noise test set of Levenberg-Marquardt
source localizers with three re-starts strategies; trained MLP; and hybrid system. Each number
is an average over 4 500 localizations, so the error bars are negligible. The training used
various sorts of noise (N=None, W=Uncorrelated White Gaussian, C=Correlated, B=Real
Brain). Naturally performance is best when the training noise is drawn from the same
distribution as the testing noise.

. trained computation localization
algorithm . .
noise time (ms) error (cm)

fixed-4-start-LM — 449 1.16
random-20-start-LM — 2175 0.31
optimal-1-start-LM — 22 0.23

N 0.3 2.70

w 0.3 1.64
MLP C 0.3 2.06

B 0.3 1.15

N 53 0.84

w 41 0.44
MLP-start-LM C 49 0.67

B 36 0.28

6. Conclusion

We have shown that the initial guess is critical for the Levenberg-Marquardt based localization
method, and that LM performs much better with a good initial guess. The multilayer
perceptron was shown to give good performance with reasonable accuracy across a range
of mismatches between training and testing noise. The MLP’s localization accuracy was
comparable to fixed-4-start-LM’s, at 1/1500-th the computational burden. This motivated
us to construct a hybrid system, MLP-start-LM, which improves the localization accuracy
beyond any other practical techniques available to us (by a factor of about four) while reducing
the computational burden to less than a thirteenth that of fixed-4-start-LM. MLP-start-LM was
comparable in accuracy to random-20-start-LM’s, at 1/60-th the computation burden, which
is about 3 times faster than might be naively expected. The hybrid system showed almost as
good performance in accuracy and computation time as the hypothetical optimal-1-start-LM.

MLPs trained with various noisy datasets show better performance for dipole signals
contaminated by real brain noise than those trained without noise. Even hybrid MLP-start-
LMs initialized by MLPs trained with noise perform better than those initialized by the MLP
trained without noise. Our conclusion is that MLPs should be trained with real noise, and
can serve as real-time MEG dipole source localizers by themselves or as excellent automatic
initial dipole guessors for iterative methods.

Our MLP was both trained and applied on data from a spherical volume conductor. One
can expect a loss in accuracy if it is trained on a spherical but applied on a realistic volume
conductor. However, since for MEG the spherical approximation is usually very good, we
expect that the initial guess will remain very reasonable.
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A number of extensions are planned in the immediate future: we will integrate a more
sophisticated forward model already developed in our laboratory, we will experiment with
different MLP structures and output representations in an effort to improve the accuracy of
the MLP, and we will investigate the application of MLPs to the multi-dipole localization
problem. We have yet to evaluate our system using real human subjects with dipoles in known
locations.
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