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Gradient Calculations for Dynamic Recurrent
Neural Networks: A Survey

Barak A. Pearlmutter

Abstract— We survey learning algorithms for recurrent
neural networks with hidden units, and put the various tech-
niques into a common framework. We discuss fixedpoint
learning algorithms, namely recurrent backpropagation and
deterministic Boltzmmann Machines, and non-fixedpoint al-
gorithms, namely backpropagation through time, Elman’s
history cutoff, and Jordan’s output feedback architecture.
Forward propagation, an online technique that uses adjoint
equations, and variations thereof, are also discussed. In
many cases, the unified presentation leads to generaliza-
tions of various sorts. We discuss advantages and disadvan-
tages of temporally continuous neural networks in contrast
to clocked omnes, continue with some “tricks of the trade”
for training, using, and simulating continuous time and re-
current neural networks. We present some simulations, and
at the end, address issues of computational complexity and
learning speed.

Keywords— Recurrent neural networks, backpropagation
through time, real time recurrent learning, trajectory learn-
ing.

I. INTRODUCTION
A. Why Recurrent Networks

The motivation for exploring recurrent architectures is
their potential for dealing with two sorts of temporal be-
havior. First, recurrent networks are capable of settling to
a solution that satisfies many constraints [1], as in a vi-
sion system which relaxes to an interpretation of an image
which maximally satisfies a complex set of conflicting con-
straints [2], [3], [4], [5], [6], a system which relaxes to find a
posture for a robot satisfying many criteria [7], and models
of language parsing [8]. Although algorithms suitable for
building systems of this type are reviewed to some extent
below, such as the algorithm used in [9], the bulk of this
paper is concerned with the problem of causing networks
to exhibit particular desired detailed temporal behavior,
which has found application in signal processing [10], [11],
speech and language processing [12], [13], [14], and neuro-
science [15], [16], [17].

It should be noted by engineers that many real-world
problems which one might think would require recurrent
architectures for their solution turn out to be solvable with
feedforward architectures, sometimes augmented with pre-
processed inputs such as tapped delay lines, and various
other architectural embellishments [18], [19], [20], [21], [22],
(23], [24], [25], [26], [27], [28], [29], [30], [31], [10], [32], [33],
[34], [35]. For this reason, if one is interested in solving a
particular problem, it would be only prudent to try a va-
riety of non-recurrent architectures before resorting to the
more powerful and general recurrent networks.

B. Pearlmutter is with the Learning Systems Department at
Siemens Corporate Research, 755 College Road East, Princeton,
NJ 08540. E-mail: bap@learning.siemens.com

This paper is concerned with learning algorithms for re-
current networks themselves, and not with recurrent net-
works as elements of larger systems, such as specialized
architectures for control [36], [37], [38], [39]. Also, since
we are concerned with learning, we will not discuss the
computational power of recurrent networks considered as
abstract machines [40], [41], [42]. Although we consider
techniques for trajectory learning, we will not review prac-
tical applications thereof. In particular, grammar learning,
although intriguing and progressing rapidly [43], [44], [45],
[46], [47], [48], [49], typically involves recurrent neural net-
works as components of more complex systems, and also at
present is inferior in practice to discrete algorithmic tech-
niques [50], [51]. Grammar learning is therefore beyond our
scope here. Similarly, learning of multiscale phenomena,
which again typically consists of larger systems containing
recurrent networks as components [52], [53], [54], [55], will
not be discussed.

B. Why Hidden Unaits

We will restrict our attention to training procedures for
networks which may include hidden units, units which have
no particular desired behavior and are not directly involved
in the input or output of the network. For the biologically
inclined, they can be thought of as interneurons.

With the practical successes of backpropagation, it seems
gratuitous to expound the virtues of hidden units and in-
ternal representations. Hidden units make it possible for
networks to discover and exploit regularities of the task at
hand, such as symmetries or replicated structure [56], [57],
and training procedures capable of exploiting hidden units,
such as the Boltzmann machine learning procedure [58]
and backpropagation [59], [60], [61], [62], are behind much
of the current excitement in the neural network field [63].
Also, training algorithms that do not operate with hidden
units, such as the Widrow-Hoff LMS procedure [64], can
be used to train recurrent networks without hidden units,
so recurrent networks without hidden units reduce to non-
recurrent networks without hidden units, and therefore do
not need special learning algorithms.

Consider a neural network governed by the equations

W oty w,100) ()
where y is the time-varying state vector, w the parameters
to be modified by the learning, and I a time-varying vec-
tor of external input. Given some error metric E'(y,t), our
task is to modify w to reduce E = [ E'(y,t)dt. Our strat-
egy will be gradient descent, so the main portion of our
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work will be finding algorithms to calculate the gradient
Vi E, the vector whose elements are 0F /Ow;.

The above formulation is for a continuous time system.
The alternative to this is a clocked system, which obeys an
equation of the form y(t + At) = f(y(?), w, I(t)). Without
loss of generality, for clocked systems we will use At = 1,
giving

y(t + 1) = f(y(t), w, I(t)), (2)
with ¢ an integer.

Certainly, barring high-frequency components in I, the
behavior of (1) can be precisely duplicated by (2) with
suitable choice of f in the latter. For this reason, in order to
determine the practical tradeoffs of one against the other,
we must consider particular functional forms for f. We will
consider the most common neural network formulation,

dys

- ut o(xi) + I

(3)

where y; is the state or activation level of unit i,
T = Z w;Y;
J

is the total input to unit 7, w;; is the strength of the connec-
tion from unit ¢ to unit j, and ¢ is a differentiable function.!
The initial conditions y;(t¢) and driving functions I;(¢) are
the inputs to the system.

This defines a rather general dynamic system. Even as-
suming that the external input terms I;(¢) are held con-
stant, it is possible for the system to exhibit a wide range
of asymptotic behaviors. The simplest is that the system
reaches a stable fixedpoint; in the next section, we will dis-
cuss two different techniques for modifying the fixedpoints
of networks that exhibit them.

More complicated possible asymptotic behaviors include
limit cycles and even chaos. Later, we will describe a num-
ber of gradient based training procedures that can be ap-
plied to training networks to exhibit desired limit cycles; or
particular detailed temporal behavior. We will not discuss
specialized non-gradient methods for learning limit cycle
attractors, such as [66], [67]. Although it has been the-
orized that chaotic dynamics play a significant computa-
tional role in the brain [68], [69], there are no specialized
training procedures for chaotic attractors in networks with
hidden units. However, Crutchfield et al. [70] and Lapedes
and Farber [71] have had success with the identification
of chaotic systems using models without hidden state, and
there is no reason to believe that learning the dynamics of
chaotic systems is more difficult than learning the dynam-
ics of non-chaotic ones.

Special learning algorithms are available for various re-
stricted cases. There are fixedpoint learning algorithms

(for details see [72], [73], [74], [75], or for a survey see [76])

(4)

! Typically o(¢) = (1+e~¢)~!, in which case o/(€) = o(¢)(1—0(¢)),
or the scaled ¢(€) = tanh(¢), in which case ¢/(€) = (1 4 o(€))(1 —
o(€)) = 1 — 02(€). The latter symmetric squashing function is usu-
ally preferable, as it leads to a better conditioned Hessian, which
speeds gradient descent [65]. However, the former was used in all the
simulations presented in this paper.

that take advantage of the special relationships holding at
a fixedpoint to reduce the storage requirements to O(m),
the number of weights, and the time requirements to the
time required for the network to settle down. There are
continuous-time feed-forward learning algorithms that are
as efficient in both time and space as algorithms for pure
feedforward networks, but are applicable only when w is
upper-triangular but not necessarily zero-diagonal, in other
words, when the network is feedforward except for recur-
rent self-connections [77], [78], [79], [80], [25] or for a survey,
[81].

Later, we will describe a number of training procedures
that, for a price in space or time, do not rely on such re-
strictions and can be applied to training networks to ex-
hibit desired limit cycles, or particular detailed temporal
behavior.

C. Continuous vs. Discrete Time

We will be concerned predominantly with continuous
time networks, as in (3). However, all of the learning proce-
dures we will discuss can be equally well applied to discrete
time systems, which obey equations like (2). Continuous
time has advantages for expository purposes, in that the
derivative of the state of a unit with respect to time is well
defined, allowing calculus to be used instead of tedious ex-
plicit temporal indexing, making for simpler derivations
and exposition.

When a continuous time system is simulated on a digital
computer, it is usually converted into a set of simple first
order difference equations, which is formally identical to
a discrete time network. However, regarding the discrete
time network running on the computer as a simulation of
a continuous time network has a number of advantages.
First, more sophisticated and faster simulation techniques
than simple first order difference equations can be used
[82]. Second, even if simple first order equations are used,
the size of the time step can be varied to suit changing cir-
cumstances; for instance, if the network is being used for a
signal processing application and faster sensors and com-
puters become available, the size of the time step could
be decreased without retraining the network. Third, be-
cause continuous time units are stiff in time, they tend to
retain information better through time. Another way of
putting this is that their bias in the learning theory sense
is towards temporally continuous tasks, which is certainly
advantageous if the task being performed is in fact tempo-
rally continuous.

Another advantage of continuous time networks is some-
what more subtle. Even for tasks which themselves have no
temporal content, such as constraint satisfaction, the nat-
ural way for a recurrent network to perform the required
computation is for each unit to represent nearly the same
thing at nearby points in time. Using continuous time units
makes this the default behavior; in the absence other forces,
units will tend to retain their state through time. In con-
trast, in discrete time networks, there is no a priori reason
for a unit’s state at one point in time to have any special
relationship to its state at the next point in time.
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A pleasant added benefit of units tending to maintain
their states through time is that it helps make information
about the past decay more slowly, speeding up learning
about the relationship between temporally distant events.

II. LEARNING IN NETWORKS WITH FIXEDPOINTS

The fixedpoint learning algorithms we will discuss as-
sume that the networks involved converge to stable
fixedpoints.? Networks that converge to fixedpoints are
interesting because of the class of things they can com-
pute, in particular constraint satisfaction and associative
memory tasks. In such tasks, the problem is usually given
to the network either by the initial conditions or by a con-
stant external input, and the answer is given by the state of
the network once it has reached its fixedpoint. This is pre-
cisely analogous to the relaxation algorithms used to solve
such things as steady state heat equations, except that the
constraints need not have spatial structure or uniformity.

A. Will a Fizedpoint Exist?

One problem with fixedpoints is that recurrent networks
do not always converge to them. However, there are a
number of special cases that guarantee convergence to a
fixedpoint.

¢ Some simple linear conditions on the weights, such as

zero-diagonal symmetry (w;; = wj;, wi; = 0) guaran-
tee that the Lyopunov function

L==Y wijyy;+ Y (ylogy: + (1 —yi)log(1—y:))
i, B

()
decreases until a fixedpoint is reached [83]. This
weight symmetry condition arises naturally if weights
are considered to be Bayesian constraints, as in Boltz-
mann Machines [84].

o A unique fixedpoint is reached regardless of initial con-

ditions if Eij 'wfj < max(c’) where max(c’) is the
maximal value of ¢’(z) for any « [85], but in practice
much weaker bounds on the weights seem to suffice,
as indicated by empirical studies of the dynamics of
networks with random weights [86].

o Other empirical studies indicate that applying fixed-
point learning algorithms stabilizes networks, causing
them to exhibit asymptotic fixedpoint behavior [87],
[88]. There is as yet no theoretical explanation for
this phenomenon, and it has not been replicated with
larger networks.

One algorithm that is capable of learning fixedpoints, but
does not require the network being trained to settle to a
fixedpoint in order to operate, is backpropagation through
time [59]. This has been used by Nowlan to train a con-
straint satisfaction network for the eight queens problem,
where shaping was used to gradually train a discrete time

2Technically, these algorithms only require that a fixedpoint be
reached, not that it be stable. However, it is unlikely (with prob-
ability zero) that a network will converge to an unstable fixedpoint,
and in practice the posibility of convergence to unstable fixedpoints
can be safely ignored.

network without hidden units to exhibit the desired at-
tractors [89]. However, the other fixedpoint algorithms we
will consider take advantage of the special properties of a
fixedpoint to simplify the learning algorithm.

B. Problems with Fizedpoints

Even when it can be guaranteed that a network settles
to a fixedpoint, fixedpoint learning algorithms can still run
into trouble. The learning procedures discussed here all
compute the derivative of some error measure with respect
to the internal parameters of the network. This gradient
is then used by an optimization procedure, typically some
variant of gradient descent, to minimize the error. Such op-
timization procedures assume that the mapping from the
network’s internal parameters to the consequent error is
continuous, and can fail spectacularly when this assump-
tion is violated.

Consider mapping the initial conditions §(¢g) to the re-
sultant fixedpoints, §(te) = F(§(to)). Although the dy-
namics of the network are all continuous, F need not be.
For purposes of visualization, consider a symmetric net-
work, whose dynamics thus cause the state of the network
to descend the energy function of equation (5). As shown
schematically in figure 1, even an infinitesimal change to
the initial conditions, or to the location of a ridge, or to
the slope of an intermediate point along the trajectory,
can change which fixedpoint the system ends up in. In
other words, F is not continuous. This means that as
a learning algorithm changes the locations of the fixed-
points by changing the weights, it is possible for it to cross
such a discontinuity, making the error jump suddenly; and
this remains true no matter how gradually the weights are
changed.

C. Recurrent Backpropagation

It was shown independently by Pineda [72] and Alemeida
[73] that the error backpropagation algorithm [61], [59], [60]
is a special case of a more general error gradient computa-
tion procedure. The backpropagation equations are

o= Y wjiy
J
yi = o)+ (6)
2; = O'I(xi)Zwijzj + €5 (7)
J
oF
T (8)

where z; is the ordered partial derivative of E with respect
to y; as defined in [60], E is an error measure over y(ts ),
and ¢; = OF /Jy;(ts) is the simple derivative of E with re-
spect to the final state of a unit. In the original derivations
of backpropagation, the weight matrix is assumed to be tri-
angular with zero diagonal elements, which is another way
of saying that the connections are acyclic. This ensures
that a fixedpoint is reached, and allows it to be computed
very efficiently in a single pass through the units. But the
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Fig. 1. This energy landscape, represented by the curved surface, and the balls, representing states of the network, illustrate some potential
problems with fixedpoints. The initial conditions a and b can differ infinitesimally but map to different fixedpoints, so the mapping
of initial conditions to fixedpoints is not continuous. Likewise, an infinitesimal change to the weights can change which fixedpoint the
system evolves to from a given starting point by moving the boundary between the basins of attraction of two attractors. Similarly, point
¢ can be changed from a fixedpoint to a non-fixedpoint by an infinitesimal change to the weights.

backpropagation equations remain valid even with recur-
rent connections, assuming a fixedpoint is found.

If we assume that equation (3) reaches a fixedpoint,
which we will denote y(t«), then equation (6) must be
satisfied. And if (6) is satisfied, and assuming we can find
z; that satisfy (7), then (8) will give us the derivatives we
seek, even in the presence of recurrent connections. (For
a simple task, [90] reports that reaching the precise fixed-
point is not crucial to learning.)

One way to compute a fixedpoint for (6) is to relax to a
solution. By subtracting y; from each side, we get

0=—yi+o(z)+ L
At a fixedpoint, dy; /dt = 0, so the equation

dyi
dt
has the appropriate fixedpoints. Now we note that when
—y; + o(x;) + I; is greater than zero, we can reduce its
value by increasing y;, so under these circumstances dy; /dt
should be positive, so £ should be greater than zero. We
can choose k = 1, giving (3) as a technique for relaxing to
a fixedpoint of (6).

Equation (7) is linear once y is determined (y appears in
the equation through the intermediate variable z, and also
through the error terms e;), so (7) has a unique solution.
Any technique for solving a set of linear equations could be
used. Since we are computing a fixedpoint of (6) using the
associated differential equation (3), it is tempting to do the
same for (7) using

dZZ'
dt

k

=—yito(z)+ 1

= —z; + O'I(;l‘i) Z‘wi]'Zj + e;. (9)
J

These equations admit to direct analog implementation.
In a real analog implementation, different time constants
would probably be used for (3) and (9), and under the as-
sumption that the time y and z spend settling is negligible
compared to the time they spend at their fixedpoints and
that the rate of weight change 7 is slow compared to the
speed of presentation of new training samples, the weights
would likely be updated continuously by an equation like

dE
dwij

d'wl']'
dt

=-n = —NYiz; (10)

or, if a momentum term 0 < o < 1 is desired,
d2'lUZ'J'
dt?

C.1 Simulation of an Associative Network

dwij

+(1-a) 7

(11)

+ nyizj = 0.

In this section we will simulate a recurrent backpropaga-
tion network learning a higher order associative task, that
of associating three pieces of information: two four bit shift
registers, A and B, and a direction bit, D. If D is off, then
B is equal to A. If D is on, then B is equal to A rotated one
bit to the right, with wraparound. The task is to recon-
struct one of these three pieces of information, given the
other two.

The architecture of the network is shown in figure 2.
Three groups of visible units hold A, B, and D. An undif-
ferentiated group of ten hidden units is fully and bidirec-
tionally connected to all the visible units. There are no
connections between visible units. An extra unit, called a
bias unit, is used to implement thresholds. This unit has
no incoming connections, and is forced to always have a
value of 1 by a constant external input of 0.5. Connections
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Fig. 2. The architecture of a network to solve an associative version
of the four bit rotation problem.

Hidden

Units —

go from it to each other unit, allowing units to have biases,
which are equivalent to the negative of the threshold, with-
out complicating the mathematics. Inputs are represented
by an external input of +0.5 for an on bit, —0.5 for an off
bit, and 0 for a bit to be completed by the network.

The network was trained by giving it external inputs
that put randomly chosen consistent patterns on two of
the three visible groups, and training the third group to
attain the correct value. The error metric was the squared
deviation of each I/O unit from its desired state, except
that units were not penalized for being “too correct.”3 All
96 patterns were successfully learned, except for the ones
which were ambiguous, as shown in the state diagrams of
figure 4. The weights after this training, which took about
300 epochs, are shown in figure 3. By inspection, many
weights are large and decidedly asymmetric; but during
training, no instabilities were observed. The network con-
sistently settled to a fixedpoint within twenty simulated
time units. When the network was tested on untrained
completion problems, such as reconstructing D as well as
half of A and B from partially, but unambiguously, speci-
fied A and B, performance was poor. However, redoing the
training with weight symmetry enforced, however, caused
the network to learn not only the training data but also to
do well on these untrained completions.

[9] successfully applied the [72], [73] recurrent backprop-

3A unit with external input could be pushed outside the [0,1]
bounds of the range of the o(-) used.

Fig. 3. A Hinton diagram of weights learned by the network of
figure 2.

agation learning procedure to learning weights for a relax-
ation procedure for dense stereo disparity problems with
transparent surfaces. By training on examples, they were
able to learn appropriate weights instead of deriving them
from a simplified and unrealistic analytical model of the
distribution of surfaces to be encountered, as is usual.

D. Deterministic Boltzmann Machines

The Mean Field form of the stochastic Boltzmann Ma-
chine learning rule, or MFT Boltzmann Machines, [91] have
been shown to descend an error functional [74]. Stochastic
Boltzmann Machines themselves [58] are beyond our scope
here; instead, we give only the probabilistic interpretation
of MFT Boltzmann Machines, without derivation.

In a a deterministic Boltzmann Machine, the transfer
function of (3) is o(¢) = (1 + e=¢/T)=1 where T is the
temperature, which starts at a high value and is gradually
lowered to a target temperature each time the network is
presented with a new input; without loss of generality, we
assume this target temperature to be 7' = 1. The weights
are assumed to be symmetric and zero-diagonal. Input is
handled in a different way than in the other procedures we
discuss: the external inputs I; are set to zero, and a subset
of the units, rather than obeying (3), have their values set
externally. Such units are said to be clamped.

In learning, a set of input units (states over which we
will index with «) are clamped to some values, the output
units are similarly clamped to their correct corresponding
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Fig. 4. Network state for all the cases in the four bit rotation problem. This display shows the states of the units, arranged as in figure 2.
Each row of six shows one value for register A. There are 2* = 16 such rows. Within each row, the three diagrams on the left show the
network’s state when competing the direction bit, register B, and register A, unshifted. The right three are the same, except with a shift.
Note that all completions are correct except in the two cases where the rotation bit can not be determined from the two shift registers,

namely a pattern of 0000 or 1111.

values, the network is allowed to settle, and the quantities

P = (wiy;) ZP Jus P (12)

are accumulated, where () denotes an average over the en-
vironmental distribution, the + superscript denote clamp-
ing of both input and output, and « is used to index the
input units and 3 indexes the output units. The same pro-
cedure is then repeated, but with the output units (states
of which we will index by ) not clamped, yielding

Z P(a (13)

pi; = (viys) R

where the — superscript denotes clamping of only the in-
puts and not the outputs. At this point, it is the case that

- = pfi — (14)

where
P(Bla)
G= 2, Ple)los o=

is a measure of the mformatlon theoretic difference between
the clamped and unclamped distribution of the output
units given the clamped input units. P~ (f]a) measures
how probable the network says § is given «, and its def-
inition is beyond the scope of this paper, while P(8|a) is

(15)
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the probability of 8 being the correct output when « is the
input, as given by the target distribution to be learned.

This learning rule (14) is a version of Hebb’s rule in
which the sign of synaptic modification is alternated, pos-
itive during the “waking” phase and negative during the
“hallucinating” phase.

Even before the learning rule was rigorously justified, de-
terministic Boltzmann Machines were applied to a number
of tasks [92], [91]. Although weight symmetry is assumed
in the definition of energy which is used in the definition of
probability, and is thus fundamental to these mathematics,
it seems that in practice weight asymmetry can be tolerated
in large networks [88]. This makes MFT Boltzmann Ma-
chines the most biologically plausible of the various learn-
ing procedures we discuss, but it is difficult to see how it
would be possible to extend them to learning more com-
plex phenomena, like limit cycles or paths through state
space. And thus, although they are probably the best cur-
rent technique in their domain of application, we now turn
our attention to procedures suitable for learning more dy-
namic sorts of behaviors.

III. CoMPUTING THE GRADIENT WITHOUT ASSUMING
A FIXEDPOINT

Now we get to the heart of the matter—the computation
of V, £, the gradient of the error £ with respect to the vec-
tor of free parameters w, where the error is not defined at a
fixedpoint but rather is a function of the network’s detailed
temporal behavior. The techniques we will discuss here,
like those of section II, are quite general purpose: they can
accommodate hidden units as well as various architectural
embellishments, such as second-order connections [93], [34],
[94], [44], weight sharing [23], [35], and in general any of
the architectureal modifications made to neural networks to
customize them for their problem domain. We will consider
two major gradient calculation techniques, and then a few
more derived from them. The first is the obvious extension
of backpropagation through time (BPTT) to continuous
time [95], [96], [62].

A. Backpropagation Through Time

The fixedpoint learning procedures discussed above are
unable to learn non-fixedpoint attractors, or to produce de-
sired temporal behavior over a bounded interval, or even
to learn to reach their fixedpoints quickly. Here, we turn
to a learning procedure suitable for such non-fixedpoint
situations. This learning procedure essentially converts a
network evolving through time into a network whose acti-
vation is flowing through a number of layers, translating
time into space, as shown in figure 5. Backpropagation
then becomes applicable. The technique is therefore called
Backpropagation Through Time, or BPTT.

Consider minimizing F(y), some functional of the tra-
jectoryttaken by y between tg and t;. For instance,
E = tol(yo(t) — d(t))*dt measures the deviation of yo(t)
from the function d(t), and minimizing this £ would teach
the network to have yg(t) imitate d(¢). Below, we derive
a technique for computing 0E(y)/0w;; efficiently, thus al-

lowing us to do gradient descent in the weights so as to
minimize £. Backpropagation through time has been used
to train discrete time networks to perform a variety of tasks
[59], [89]. Here, we will derive the continuous time version
of backpropagation through time, as in [96], and use it in
two toy domains.

In this derivation, we take the conceptually simple ap-
proach of unfolding the continuous time network into a
discrete time network with a step of At, applying back-
propagation to this discrete time network, and taking the
limit as At approaches zero to get a continuous time learn-
ing rule. The derivative in (3) can be approximated with

dt At ’

(16)
which yields a first order difference approximation to (3),
Uit + At) = (1 — Ay (t) + Ato(2;(1)) + At(t). (17)

Tildes are used throughout for temporally discretized ver-
sions of continuous functions.

Let us define ¢; to be the first variation of £ with respect
to the function y;(t),

8B
(Syz'(t)

In the usual case E is of the form

ei(t) . (18)

ty

E= [ [f(y()t)dt

to

(19)

so €;(t) = O0f(y(t),t)/0yi(t). Intuitively, e;(t) measures
how much a small change to y; at time ¢ affects E if every-
thing else is left unchanged.

As usual in backpropagation, let us define

()= 20

BRI
where the 9% denotes the ordered derivative of [97], with
variables ordered here by time and not unit index. Intu-
itively, Z;(t) measures how much a small change to g; at
time ¢ affects £ when this change is propagated forward
through time and influences the remainder of the trajec-
tory, as in figure 7. Of course, z; is the limit of z; as
At — 0. This z is the § of the standard backpropagation
“generalized 6 rule.”

We can use the chain rule for ordered derivatives to calcu-
late Z;(¢) in terms of the Z;(t + At). According to the chain
rule, we add all the separate influences that varying g;(t)
has on E. It has a direct contribution of Ate;(t), which
comprises the first term of our equation for Z;(¢). Varying
9i(t) by dg;(t) has an effect on g;(t+ At) of dg; (¢) (1 — At),
giving us a second term, namely (1 — At)Z(t + At).

Each weight w;; makes g;(¢) influence g;(t + At), ¢ #
j. Let us compute this influence in stages. Varying
Ui(t) by dg;(t) varies Z;(t) by dy;(t) w;i;, which varies
o(&;(t)) by dgi(t) wi; o'(Z;(t)), which varies g;(t + At)

(20)
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QQOO

Fig. 5. A recurrent network is shown on the left, and a representation of that network unfolded in time through four time steps is shown on

the right.
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Fig. 6. The infinitesimal changes to y considered in

€1 (t) .

by dy;(t) ws; o'(Z;(t)) At. This gives us our third and final
term, > wi; o'(Z;(t)) At Zj(t + At). Combining these,

Zi (t) = Ate; (t)—}—(l—At)gi (t—}—At)—}—Z Wi O'/(i‘]' (t))AtEj (t—l—At).

J

(21)
If we put this in the form of (16) and take the limit as
At — 0 we obtain the differential equation

dz  df(y,w, ) SF

i 4y z+ 5y (22)
dE Bodf(y,w, 1)

— = y——"—"""zdt. 2
dw /tu e (23)

with boundary condition z(¢;) = 0. Thus we have derived
appropriate adjoint equations to (1). They are similar to
the analogous discrete-time backwards error equations,

At—1) = df(yc’z;’l)”aii) (24)
dE df (y,w, I)
T = Zyidw z. (25)

t

where the error to be minimized is E. If this error is of the
usual form of an integral £ = [ E’(y(t),¢)dt then we get
the simple form 6 E/éy = dE'/dy.

Fig. 7. The infinitesimal changes to y considered in
zZ1 (t) .

For the particular form of (3), this comes to

dZZ'
ik Z wijo'(z;)z;. (26)
j

For boundary conditions note that by (18) and (20)
Zi(t1) = Atei(t1), so in the limit as At — 0 we have
zj (tl) =0.

Consider making an infinitesimal change dw;; to w;; for
a period At starting at ¢. This will cause a correspond-
ing infinitesimal change in E of y;(t)o/(x;(t))Atz; (t)dw;;.
Since we wish to know the effect of making this infinitesi-
mal change to w;; throughout time, we integrate over the
entire interval, yielding

E b
8 = / yiO'/(.Z‘j)Zjdt.

Owij — J,

One can also derive (26), (27) and (37) using the calcu-
lus of variations and Lagrange multipliers, as in optimal
control theory [98], [99]. In fact, the idea of using gradi-
ent descent to optimize complex systems was explored by
control theorists in the late 1950s. Although their mathe-
matical techniques and algorithms are identical to those re-
viewed here, and thus handled hidden units, they refrained
from exploring systems with so many degrees of freedom,
perhaps in fear of local minima.

It is also interesting to note that the recurrent backprop-
agation learning rule (section II-C) can be derived from

(27)
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these. Let I; be held constant, assume that the network
settles to a fixedpoint, and let £ be integrated for one time
unit before ¢;. As t; — o0, (26) and (27) reduce to the
recurrent backpropagation equations (9) and (8), so in this
sense backpropagation through time is a generalization of
recurrent backpropagation.

There are two ways to go about finding such derivations.
One is direct, using the calculus of variations [98]. The
other is to take the continuous time equations, approxi-
mate them by difference equations, precisely calculate the
adjoint equations for this discrete time system, and then
approximate back to get the continuous time adjoint equa-
tions, as in [76]. An advantage of the latter approach is
that, when simulating on a digital computer, one actually
simulates the difference equations. The derivation ensures
that the simulated adjoint difference equations are the pre-
cise adjoints to the simulated forward difference equations,
so the computed derivatives contain no approximation er-
rors.

B. Real Time Recurrent Learning

An online, exact, and stable, but computationally expen-
sive, procedure for determining the derivatives of functions
of the states of a dynamic system with respect to that sys-
tem’s internal parameters has been discovered and applied
to recurrent neural networks a number of times [100], [101],
[102], [103]; for reviews see also [81], [76], [L04]. It is called
by various researchers forward propagation, forward pertur-
bation, or real time recurrent learning, RTRL. Like BPTT,
the technique was known and applied to other sorts of sys-
tems since the 1950s; for a hook into this literature see
[105], [106] or the closely related Extended Kalman Filter
[107]. In the general case of (1), RTRL is

dE LY
CERy
to

2
dw by (28)

where y(tg) = 0 and

dy _ df(y,w, 1) n df (y, w,I),y
dt dw dy

(29)

The v matrix is the sensitivity of the states y(t) to a change
of the weights w
Under the assumption that the weights are changing

slowly, RTRL can be made an online algorithm by updat-
ing the weights continuously instead of actually integrating
(28),

dw oF

— =Ny 30

= Gy (30)
where 7 is the learning rate, or, if a momentum term 0 <
a < 1 is also desired,

d*w dw OF
—+ (1 - .
o +( )dt +ny m =0

T (3

For the special case of a fully connected recurrent neural
network, as described by (3), applying the general RTRL

formulas above yields

dvijr  Of Ofk
7: aykyl]k+([j_kyj+zw1k7m Inetr et (32)
de
i —nz Drge(t). (39)

Regretably, the computation of 4 is very expensive, and
also non-local. The v array has nm elements, where n is
the number of states and m the number of weights, which is
typically on the order of n?. Updating 7 requires O(n3m)
operations in the general case, but the particular struc-
ture of a neural network causes some of the matrices to be
sparse, which reduces the burden to O(n?*m). This remain
too high to make the technique practical for large networks.
Nevertheless, because of its ease of implementation, RTRL
is used by many researchers working with small networks.

C. Less Computationally Burdensome Online Techniques

One way to reduce the complexity of the RTRL algo-
rithm is to simply leave out elements of 4 that one has
reason to believe will remain approximately zero. This ap-
proach, in particular ignoring the coupling terms which re-
late the states of units in one module to weights in another,
has been explored by Zipser [108].

Another is to use BPTT with a history cutoff of k& units
of time, termed BPTT(k) by Williams and Peng [109], and
make a small weight change each timestep. This obviates
the need for epochs, resulting in a purely online technique,
and is probably the best technique for most practical prob-
lems.

A third is to take blocks of s timesteps using BPTT,
but use RTRL to encapsulate the history before the start
of each block. This requires O(s~'n?m + nm) time per
step, on average, and O(nm + sm) space. Choosing s = n
makes this O(nm) time and O(nm) space, which dominates
RTRL. This technique has been discovered independently
a number of times [110], [111].

Finally, one can note that, although the forward equa-
tions for y are nonlinear, and therefore require numeric
integration, the backwards equations for z in BPTT are
linear. Since the dE/dw terms are linear integrations of
the z, this means that they are linear functions of the ex-
ternal inputs, namely the e; terms. As shown by Sun et al.
[112], this allows one, during the forward pass, to compute
a matrix relating the external error signal to the elements
of V,, allowing a fully online algorithm with O(nm) time
and space complexity.

D. Time Constants

A major advantage of temporally continuous networks
is that one can add additional parameters that control the
temporal bahavior in ways known to relate to natural tasks.
An example of this is time constants, which were learned
in the context of neural networks in [79], [53], [52]. If we
add a time constant 7T; to each unit ¢, modifying (3) to

dy;
dt

T; :_yz‘i'a( )+IZJ (34)
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and carry these terms through the derivation of section III-
A, equations (26) and (27) become

dZZ' 1 1 /
— = =z — e — —w;io(zj)zj. (35)
dt E XJ: 77] J 7777
and .
OF 1 !
o = T/t yio(z;)z;dt. (36)
¥ J 0

In order to learn these time constants rather than just
set them by hand, we need to compute 0E(y)/0T;. If we
substitute p; = 7;”" into (34), find 9E/dp; with a deriva-

tion similar to that of (27), and substitute 7; back in we

get
i1 .
or; — T Jy, ot

(37)

E. Time Delays

Consider a network in which signals take finite time to
travel over each link, so that (4) is modified to

zi(t) = E wj;y; (t — 751, (38)

7j; being the time delay along the connection from unit j
to unit 7. Let us include the variable time constants of sec-
tion III-D as well. Such time delays merely add analogous
time delays to (35) and (36),

. , 1
0= izi(t)_ei(t)_zj: wz‘jU(ﬂiy’(HTij))Tij (t+m5),
(39)

0E 1 " )
F f/t Yo' (2 (t + 7))z (¢ + 7i5)dt,  (40)
13 J 0

while (37) remains unchanged. If we set 7;; = At, these
modified equations alleviate concern over time skew when
simulating networks of this sort, obviating any need for
accurate numerical simulations of the differential equations
and allowing simple difference equations to be used without
fear of inaccurate error derivatives.

Instead of regarding the time delays as a fixed part of the
architecture, we can imagine modifiable time delays. Given
modifiable time delays, we would like to be able to learn
appropriate values for them, which can be accomplished
using gradient descent by

= [ 500 a0 e~

67-”» to

(41)

[12] applied recurrent networks with immutable time de-
lays in the domain of speech. Feedforward networks with
immutable time delays (TDNNs) have been applied with
great success in the same domain by Lang et al. [22]. A
variant of TDNNs which learn the time delays was explored
by Bodenhausen et al. [113]. The synapses in their net-
works, rather than having point taps, have gaussian en-
velopes whose widths and centers were both learned. Sim-
ilar synaptic architectures using alpha function envelopes

(which obviate the need for a history buffer) whose pa-
rameters were learned were proposed and used in systems
without hidden units [114], [29]. A continuous time feed-
forward network with learned time delays was successfully
applied to a difficult time-series prediction task by Day and
Davenport [25].

In the sections on time constants and delays, we have
carried out the derivative derivations for BPTT. All the
other techniques also remain applicable to this case, with
straightforward derivations. The analogous derivations for
RTRL are carried out in [76]. However, we will not here
simulate networks with modifiable time delays.

An interesting class of architectures would have the state
of one unit modulate the time delay along some arbitrary
link in the network or the time constant of some other
unit. Such a “higher order time delay” architecture seems
appropriate for tasks in which time warping is an issue,
such as speech recognition. The gradients with respect
to higher order time delay can be readily calculated by
appropriate augmentation of either BPTT or RTRL.

In the presence of time delays, it is reasonable to have
more than one connection between a single pair of units,
with different time delays along the different connections.
Such “time delay neural networks” have proven useful in
the domain of speech recognition [20], [22], [21], [115]. Hav-
ing more than one connection from one unit to another re-
quires us to modify our notation somewhat; weights and
time delays are modified to take a single index, and we in-
troduce some external apparatus to specify the source and
destination of each connection. Thus w; is the weight on a
connection between unit £(¢) and unit R(7), and 7; is the
time delay along that connection. Using this notation we
write (38) as

z(t)= Y wiyrgH(t = 7).

ilL()=i

(42)

Our equations would be more general if written in this
notation, but readability would suffer, and the translation
is quite mechanical.

F. Extending RTRL to Time Constants and Time Delays

We have seen that BPTT can be easily applied to these
new sorts of free parameters we have been adding to our
networks, namely time constants and time delays. Other
gradient calculation procedures also can be naturally ap-
plied to these new sorts of free parameters. In this section,
we apply RTRL, first to incorporate time constants and
then time delays.

If we begin with (34), first we must generalize (32) and
(33) to correctly modify the weights in the presence of time
constants. If we substitute & for 7 in (34), take the partial
with respect to w;;, and substitute in 7 where possible, we
have a the differential equation for v

vkij

T
Pt

= —ykij + 0’ (2) Y wylij, (43)

{

nearly the same as (32) except for a time constant.
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We can derive analogous equations for the time constants
themselves; define

i Oy (¢
J

(44)

take the partial of (3) with respect to 7}, and substitute in
q. This yields

dg; . dyi
Tzd—t] =gt o' (2i) Y wrig)
s

(45)

which can be used to update the time constants using the
continuous update rule

dT; ;
i 2: o
dt =1 ; €idi-

Similarly, let us derive equations for modifying the time
delays of section III-E. Define

(46)

Oy (1)

k

ri(t) = (47)
4 67’@'

and take the partial of (3) with respect to 7;, arriving at

a differential equations for r,

drfj _ dy;

Tt = —rijto’ () (wi —-(t = 7)) — zl: wigri; (t=71k)).
N—— ——

included if j = k&
(48)
The time delays can be updated online using the continuous
update equation

drij k
- " —nzk:ekri]». (49)

IV. SOME SIMULATIONS

In the following simulations, we used networks without
time delays, but with mutable time constants. As in the
associative network of section II-C.1, an extra input unit
whose value was always held at 1 by a constant external
input of 0.5, and which had outgoing connections to all
other units, was used to implement biases.

Using first order finite difference approximations, we
integrated the system y forward from ¢y to ¢1, set the
boundary conditions z;(¢;) = 0, and integrated the sys-
tem z backwards from ¢; to g while numerically integrat-
ing z; o(x;) y; and z; dy; /dt, thus computing 0F/0w;; and
OF/dT;. Since computing dz; /dt requires ¢’(z;), we stored
it and replayed it backwards as well. We also stored and
replayed y; as it is used in expressions being numerically
integrated.

We used the error functional

1 b
EF=- i i—dizdt
22/ iy — di)

where d;(t) is the desired state of unit ¢ at time ¢ and s;() is
the importance of unit ¢ achieving that state at that time,

(50)

in this case 0 except when ¢ was an output unit and after
some time (5 units) had elapsed for the network to settle
down. Throughout, we used o(¢) = (1 + €¢~¢)~1. Time
constants were initialized to 1, weights were initialized to
uniformly distributed random values between 1 and —1,
and the initial values y;(tg) were set to I;(to) + o(0). The
simulator used first order difference equations (17) and (21)

with At = 0.1.

A. A Rotated Figure Eight

In this simulation a network was trained to generate a
figure eight shaped trajectory in two of its units, desig-
nated output units. The figure eight was to be rotated
about its center by an angle # which was input to the
network through two input units which held the coordi-
nates of a unit vector in the appropriate direction. This
was intended to model a controlled modulation of a central
pattern generator from tonic modulatory input, as in the
lobster stomatagastric gangleon [116]. The target vector

for the two output units was generated by
0.5
J+(03)
(51)

cosfl  —sinf sinwt/16

sinf  cosd cosmt/16

target = 0.4 (

)

while the input to the network was simply the angle 6,
represented to avoid blemishes as the direction vector

sin 6
< cos )

Eight different values of 8, equally spaced about the cir-
cle, were used to generate the training data. In experiments
with 20 hidden units, the network was unable to learn the
task. Increasing the number of hidden units to 30 allowed
the network to learn the task, as shown on the left in fig-
ure 8. But as shown on the right in figure 8, generalization
is poor when the network is run with the eight input angles
furthest from the training angles, i.e. 22.5 degrees off.

The task would be simple to solve using second order
connections, as they would allow the problem to be decou-
pled. A few units could be devoted to each of the orthog-
onal oscillations, and the connections could form a rota-
tion matrix. The poor generalization of the network shows
that it is not solving the problem in such a straightforward
fashion, and suggests that for tasks of this sort it might be
better to use slightly higher order units.

V. STABILITY AND PERTURBATION EXPERIMENTS

We can analytically determine the stability of the net-
work by measuring the eigenvalues of Df where f is the
function that maps the state of the network at one point
in time to its state at a later time. For instance, for a
network exhibiting a limit cycle one would typically use
the function that maps the network’s state at some time
in the cycle to its state at the corresponding time in the
next cycle. Unfortunately, this gives only a local stability
measure, and also does not factor out the effect of hidden
units.
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Fig. 8. The output of the rotated figure eight network at all the trained angles (left) and some untrained angles (right).

In our attempt to judge the stability of the limit cy-
cles exhibited above, rather than calculating Df, where
f(y(t)) = y(t + 16), we simply modified the simulator to
introduce random perturbations and observed the effects of
these perturbations upon the evolution of the system.? The
two output units in the unrotated figure eight task appear
to be phase locked, as their phase relationship remains in-
variant even in the face of major perturbations. This phase
locking is unlike the solution that a human would create
by analytically determining weights through decoupling the
two output units and using linearized subnets to generate
the desired oscillatory behavior, as suggested by Merrick
Furst.

The networks to which we introduced these perturba-
tions had been trained to produce simple limit cycles, one
in a circular shape, and the other in a figure eight shape.
Neither of the networks had any input units; they produced
only a single limit cycle.

The unperturbed limit cycle of the figure eight network
is symmetric, but when perturbations are introduced, as in
the right of figure 9, symmetry is broken. The portion of
the limit cycle moving from the upper left hand corner to-
wards the lower right hand corner has diverging lines, but
we do not believe that they indicate high eigenvalues and
instability. The lines converge rapidly in the upward stroke
on the right hand side of the figure, and analogous unstable
behavior is not present in the symmetric downward stroke
from the upper right hand corner towards the lower left.
Analysis shows that the instability is caused by the initial-
ization circuitry being inappropriately activated. Since the

4 Actually, we wouldn'’t care about the eigenvalues of D f per se, be-
cause we wouldn’t care about perturbations in the direction of travel,
as these effect only the phase, or perturbations that effect only the
hidden units. For this reason, we would want to project these out
of the matrix D f before computing the eigenvalues. This effect is
achieved automatically in our display in figure 9.

initialization circuitry is adapted for controlling just the
initial behavior of the network, when the net must delay at
(0.5,0.5) for a time before beginning the cycle by moving
towards the lower left corner, this circuitry is explicitly not
symmetric. The diverging lines seem to be caused by this
circuitry being activated and exerting a strong influence on
the output units while the circuitry itself deactivates.

In fact, [117] developed a technique for learning the lo-
cal maximum eigenvalue of the transfer function, optionally
projecting out directions whose eigenvalues are not of in-
terest. This technique, which explicitly modulates the be-
havior we only measured above, has not yet been applied
in a control domain.

VI. OTHER NON-FIXEDPOINT TECHNIQUES
A. “Elman Nets”

[118] considers a version of backpropagation through
time in discrete time in which the temporal history is cut
off. Typically, only one or two timesteps are preserved, at
the discretion of the architect. This cutoff makes backprop-
agation through time an online algorithm, as the backprop-
agation to be done to account for the error at each point
in time is done immediately. However, it makes the com-
putational expense per time step scale linearly with the
number of timesteps of history being maintained. This ac-
curacy of the computed derivative is smoothly traded off
against storage and computation.

The real question with Elman networks is whether the
contribution to the error from the history that has been
cut off is significant. This question can only be answered
relative to a particular task. For instance, [119] finds some
problems amenable to the history cutoff, but resorts to full
fledged backpropagation through time for other tasks. [43]
describe a regular language token prediction task which
is difficult for Elman nets when the transition probabili-
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Fig. 9. The output states y; and y2 plotted against each other for a 1000 time unit run, with all the units in the network perturbed by a
random amount about every 40 units of time. The perturbations in the circle network (left) were uniform in £0.1, and in the figure eight

network (right) in £0.05.

ties are equal, but find that breaking this symmetry allows
these nets to learn the task.

B. The Moving Targets Method

[120], [121], [122] propose a moving targets learning algo-
rithm. Such an algorithm maintains a target value for each
hidden unit at each point in time. These target values are
typically initialized either randomly, or to the units’ ini-
tial untrained behavior. In learning, two phases alternate.
In one phase, the hidden units’ targets are improved, such
that if the targets are attained better performance would be
achieved. In the other phase, the weights are modified such
that each unit comes closer to attaining its target values.
The error can be regarded as having two terms, one term
which penalizes the units being too far from their targets,
and another which penalizes the targets for being too far
from the values actually attained. This technique has the
appeal of decoupling temporally distant actions during the
learning of weights, and the disadvantage of requiring the
targets to be stored and updated. In the limit, as learning
rates are decreased, the moving targets method becomes
equivalent to backpropagation though time.

In continuous time, the moving targets method would
entail decoupling the units during learning, and storing a
target trajectory for each unit, including the hidden units.
The weights would then be modified to make the trajecto-
ries consistent with each other, while the trajectories of the
hidden units would be similarly modified. Unfortunately,
as with teacher forcing, even if the error is driven to very
low levels by such a procedure, there would be no guaran-
tee that the resulting network, if allowed to run free, would
have dynamics close to that of the forced dynamics.

The primary disadvantage of the technique is that each

pattern to be learned must have associated with it the tar-
gets for the hidden units, and these targets must be learned
just as the weights are. This makes the technique inappli-
cable for online learning, in which each pattern is seen only
once.

C. Feedforward Networks with State

It is noteworthy that that the same basic mathematical
technique of forward propagation can be applied to net-
works with a restricted architecture, feedforward networks
whose units have state [77], [78], [80]. This is the same
as requiring the w;; matrix to be triangular, but allow-
ing non-zero diagonal terms. If we let the v quantities be
ordered derivatives, as in standard backpropagation, then
this simplified architecture reduces the computational bur-
den substantially. The elimination of almost all tempo-
ral interaction makes 7y;;; = 0 unless ¢ = k, leaving only
O(n?) auxiliary equations, each of which can be updated
with O(1) computation, for a total update burden of O(n?),
which is the same as conventional backpropagation. This
favorable computational complexity makes it of practical
significance even for large feedforward recurrent networks.
But these feedforward networks are outside the scope of
this paper.

D. Teacher Forcing In Continuous Time

[123] coin the term teacher forcing,, which consists of
jamming the desired output values into output units as the
network runs. Thus, the teacher forces the output units
to have the correct states, even as the network runs, and
hence the name. This technique is applied to discrete time
clocked networks, as only then does the concept of changing
the state of an output unit each time step make sense.
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The error is as usual, with the caveat that errors are to be
measured before output units are forced, not after. [123] re-
port that their teacher forcing technique radically reduced
training time for their recurrent networks, although [76]
reports difficulties when teacher forcing was used networks
with a larger number of hidden units.

Williams and Zipser’s application of teacher forcing to
their networks is dependent on discrete time steps, so ap-
plying teacher forcing to temporally continuous networks
requires a different approach. The approach we shall take
is to add some controls that one imagines being used to
control the states of the output units, and use them to
keep the output units locked at their desired states. The
error function to be minimized will measure the amount
of control that it was necessary to exert, with zero error
coming only when the no external forces at all need to be
exerted.

Let ]

7 (v +o@) + 1)

i
so that (3) is just dy;/dt = F;, and let us add a new forcing
term fi(t) to (3),

F; = (52)

dy;
—— =i+ fi
7l + f

Using ® to denote the set of units to be forced, we will let
d; be the trajectory that we will force y; to follow, for each
1 € ®. So we set

(53)

dd;

fi= dt
and y;(to) = di(to) for i € ® and f; = 0 for i ¢ @, with
the consequence that y; = d; for i € ®. Now let the error
functional be of the form

p= [ wsw.on

to

— F (54)

(53)

where typically L = 3,4 f7

We can modify the derivation in section III-A for this
teacher forced system. For ¢ € ® a change to y; will be
canceled immediately, so taking the limit as At — 0 yields
z; = 0. Because of this, it doesn’t matter what e; is for
1€ Q.

We can apply (18) to calculate e; for ¢ ¢ ®. The chain
rule is used to calculate how a change in y; effects E
through the f;, yielding

or

(56)

For i ¢ ® (26) and (37) are unchanged, and for j ¢ ® and
any i (27) also remains unchanged. The only equations still
required are JE /Ow;; for j € ® and 0E/9T; for i € ®. To
derive the first, consider the instantaneous effect of a small
change to w;;, giving

oL 1

h oL
6wij - T7 /to yla(mj)afi dt.

(57)

Analogously, for i € ®
1 b oL dyi

8—E = —— — ——dt. (58)
o1, ~ T )y, Of dt

We are left with a system with a number of special cases
depending on whether units are in ® or not. Interestingly,
an equivalent system results if we leave (26), (27), and (37)
unchanged except for setting z; = OL/df; for i € & and
setting all the e; = 0. It is an open question as to whether
there is some other way of defining z; and e; that results
in this simplification.

However, by taking the limit as the step size goes to zero,
it is possible to show that the continuous time analogue of
teacher forcing is to force the output states to follow desired
trajectories, with the error being the difference between the
derivative that the network attempts to apply to these units
and the derivative of the desired trajectory. This casts light
on teacher forcing in the descrete time case, which can be
seen as nearly the same thing.

Regretably it also shows that teacher forcing can result
in a network with a systematic bias, or a network which,
although when being forced has little error, when running
free rapidly drifts far from the desired trajectory, in a qual-
itative sense, as reported by Williams and Zipser for some
cases where oscillations trained with teacher forcing ex-
hibited radically and systematically lower frequency and
amplitude when running free [123].

E. Jordan Nets

[124] used a backpropagation network with the outputs
clocked back to the inputs to generate temporal sequences.
Although these networks were used long before teacher
forcing, from our perspective Jordan nets are simply a re-
stricted class of teacher forced recurrent networks, in par-
ticular, discrete time networks in which the only recurrent
connections emanate from output units. By teacher forc-
ing these output units, no real recurrent paths remain, so
simple backpropagation through a single time step suffices
for training.

The main disadvantage of such an architecture is that
state to be retained by the network across time must be
manifest in the desired outputs of the network, so new
persistent internal representations of temporal structures
cannot be created. For instance, it would be impossible to
train such networks to perform the figure eight task of just
a single one of the patterns shown in figure 8. In the usual
control theory way, this difficulty can be partially allevi-
ated by cycling back to the inputs not just the previous
timestep’s outputs, but also those from a small number of
previous timesteps. The tradeoffs between using hidden
units to encapsulate temporally hidden structure and us-
ing a temporal window of values which must contain the
desired information is problem dependent, and depends in
essence on how long a hidden variable can remain hidden
without being manifested in the observable state variables.

It is easy to construct a continuous time Jordan network,
in which the units’ values are continuous in time, the out-
put units constantly have corrected values jammed into
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them from external sources, and the only recurrent con-
nections are from the outputs back to the inputs. Above
we explored teacher forcing in the general setting of fully
recurrent networks, but when applied to a Jordan network,
the result is a system that is no longer truly recurrent, at
least as far as learning is concerned. This is because the
network maps the current visible state to the next visible
state, with no other information retained in the network.
For this reason, a continuous time Jordan network is pre-
cisely equivalent to training a layered network whose input
is the current measured value of the signal we wish the Jor-
dan network to learn, and whose target output is the first
derivative of this signal to be learned.

F. Teacher Forcing, RTRL, and the Kalman Filter

[125], [126] have pointed out that RTRL is related to a
version of the [127] filter, in the extension that allows it to
apply to nonlinear systems, namely the exztended Kalman
filter (EKF) [128], [107], [129]. The EKF has time and
space complexity of the same order as those of RTRL. One
advantage of using the EKF (instead of RTRL) for learning
the weights of a recurrent neural network, is that the EKF
rationalizes teacher forcing: it modifies both the weights
and the states on an equal basis. This solves the dilema of
teacher forcing: that if the “true output” units are extra
added units whose values are directly copied from those
of the old output units, teacher forcing fails to maintain
synchronization between the network and its teacher. The
EKF does not have this problem, in that it would adjust
the new extra and the old output units on an equal basis.

Another way of attempting to rationalize teacher forc-
ing is to note that gradient descent itself generates dE/dy
in addition to dE/dw terms. One might think this would
make it natural to use Ay = —ndE/dy, thus treating the
states on an equal basis with the weights. The problem
with this, as pointed out by Ron Williams (personal com-
munication) is that it is difficult to determine exactly what
this means. Should the derivative be taken just with re-
spect to the current states, or to their histories too? One
way alleviate this dilema is to note that, when we change
the weights, we wish we had changed them earlier. To this
end, it would be natural to change the states to what they
would have been had we changed the weights earlier. This
gives

d
Ay = “LAw. (59)
The involved matrix, dy/dw, is already available as v in

RTRL.

VII. LEARNING WITH SCALE PARAMETERS

The parameters usually modified by neural network
learning algorithms are the weights. There are no a prior:
restrictions on these values; they can be positive, negative,
or zero, and the behavior of a network is continuous with
respect to changes in its weights. These factors, along with
the tractable shape of the error surface, make simple gra-
dient descent algorithms, Aw = —ndFE/dw, surprisingly
effective.

The error term F being used generally contains one term
which has to do with how well the network’s outputs meet
some criterion. Frequently another term is added as an
expression of some a priori known probability distribtion
of the weights. For instance, adding ), w? is equivalent to
assuming that the weights are Gaussian distributed. Not
adding such a term is equivalent to assuming that the a
priori distribution on what the weights will turn out to be
is flat—not a totally unreasonable prior [28], [130].

However, we have added some new sorts of parameters,
namely time constants and time delays, here represented
generically by the vector T'. These are scale parameters,
which differ from positional parameters in a number of
ways. The most telling property of a scale parameter is that
the dynamics of the system are affected about as much by
multiplying a scale parameter by some constant, irrespec-
tive of the scale parameter’s value. For instance, changing
a time constant from 2 seconds to 2.2 seconds can be ex-
pected to have about the same qualitative effect as chang-
ing it from 200 to 220. Other properties of scale param-
eters is that they must not become negative, and that as
they approach zero, the dynamics of the associated system
becomes more and more sensitive to small changes. This
means that in practive one must add machinery to enforce
the constraint of positiveness, and that gradient descent
will become increasingly unstable as a scale parameter ap-
proaches zero, due to the system’s growing sensitivity to
its value. Also, the flat prior is no longer the appropriate
zero-knowledge prior.

All these problems can be solved in a single stroke by
noting that the correct zero-knowledge hypothesis for scale
parameters is not flat in their values, but rather flat in
their log values [131]. In practice, This corresponds to do-
ing gradient descent in £Lp = logT rather than in T it-
self; in other words, to not manipulating 7' directly but
rather using ALy = —ndE/dLyp. Such a policy also solves
the practical problems with scale parameters noted above,
as it makes the gradient descent process stiffer as T ap-
proaches zero, compensating for the system’s increased sen-
sitivity in that region, and it naturally enforces 7" > 0 since
T = exp Ly > 0, which enforces this constraint without
any additional mechanism. This last property led to the
independent invention and use of this technique by [132].

In addition, weight decay of scale parameters becomes
simpler, as decaying Lp towards zero corresponds to decay-
ing T towards one, which is a reasonable target. Of course,
a constant factor can be inserted to make the decay towards
some other a priori most likely value. Note, however, that
the force exerted by the decay term will scale with the log
parameter, which is more appropriate, since the additional
force exerted should correspond to the change’s effect on
the dynamics of the system, in order to pass dimensional
analysis.

VIII. SUMMARY AND CONCLUSION
A. Complexity Comparison

Consider a network with n units and m weights which is
run for s time steps (variable grid methods [133] would re-
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duce s by dynamically varying At) where s = (t; —tg)/At.
Additionally, assume that the computation of each ¢;(t) is
O(1) and that the network is not partitioned.

Under these conditions, simulating the y system takes
O(m+n) = O(m) time for each time step, as does simulat-
ing the z system. This means that using the technique de-
scribed in section IV, the entire simulation takes O(m) time
per time step, the best that could be hoped for. Storing
the activations and weights takes O(n+m) = O(m) space,
and storing y during the forward simulation to replay while
simulating z backwards takes O(sn) space, so if we use this
technique the entire computation takes O(sn+m) space. If
we simulate y backwards during the backwards simulation
of z, the simulation requires O(n+m) space, again the best
that could be hoped for. This later technique, however, is
susceptible to numeric stability problems.

The online technique of RTRL described in section I11-B
requires O(n?m) time each time step, and O(nm) space.
The other techniques discussed in that section require less
time and space, and retain all of the advantages of being
online (with the possible exception of simplicity of imple-
mentation), so it would appear that these new online meth-
ods dominate RTRL. These time complexity results are for
sequential machines, and are summarized in table I.

Note that in this section we are concerning ourselves with
how much computation it takes to obtain the gradient in-
formation. This is generally just the inner loop of a more
complex algorithm to adjust the weights, which uses the
gradient information, such as a stochatic gradient descent
algorithm.

B. Speeding the Optimization

Experience has shown that learning in these networks
tends to be “stiff” in the sense that the Hessian of the
error with respect to the weights (the matrix of second
derivatives) tends to have a wide eigenvalue spread. One
technique that has proven useful in this particular situation
is that of [134] which was applied by Fang and Sejnowski
to the single figure eight problem perturbed in figure 9
with great success by [135]. For a modern variant of this
technique which is suitable to online pattern presentation,
see [136], [137], [138].

Since the acceleration of convergence in these gradient
systems is such an important issue, it can be helpful to
know some of the techniques used to analyze the limita-
tions of convergence under various conditions in systems
of this sort, and of some other techniques for accelerating
their convergence; see [139, page 304] and [140], [141], [142],
[143], [144], [145], [146], [147], [148].

C. Prospects and Future Work

Control domains are the most natural application for
continous time recurrent networks, but signal processing
and speech generation (and recognition using generative
techniques) are also domains to which this type of network
might be naturally applied. Such domains may lead us to
complex architectures like those discussed in section III-E.
For control domains, it seems important to have ways to

force the learning towards solutions that are stable in the
control sense of the term.

On the other hand, we can turn the logic of section V
around. Consider a difficult constraint satisfaction task of
the sort that neural networks are sometimes applied to,
such as the traveling salesman problem [149]. Two com-
peting techniques for such problems are simulated anneal-
ing [150], [58] and mean field theory [92]. By providing a
network with a noise source which can be modulated (by
second order connections, say) we could see if the learn-
ing algorithm constructs a network that makes use of the
noise to generate networks that do simulated annealing, or
if pure gradient descent techniques are evolved. If a hy-
brid network evolves, its structure may give us insight into
the relative advantages of these two different optimization
techniques, and into the best ways to structure annealing
schedules.

D. Conclusions

Recurrent networks are often avoided because of a fear of
inordinate learning times and incomprehensible algorithms
and mathematics. It should be clear from the above that
such fears are unjustified. Certainly there is no reason to
use a recurrent network when a feedforward layered ar-
chitecture suffices; but on the other hand, if recurrence is
needed, there are a plethora of learning algorithms avail-
able across the spectrum of quiescence vs. dynamics and
across the spectrum of accuracy vs. complexity and across
the spectrum of space vs. time. These new learning al-
gorithms, and experience with recurrent and temporally
continuous networks, has made them much more tractable
and practical than they seemed only a few years ago.
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