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Abstract — Robust clustering of data into linear subspaces is a

common problem. Here we treat clustering into one-dimensional

subspaces that cross the origin. This problem arises in blind source

separation, where the subspaces correspond directly to columns of a

mixing matrix. We present an algorithm that identifies these sub-

spaces using a modified k-means procedure, where line orientations

and distances from a line replace the cluster centres and distance

from cluster centres of conventional k-means. This method, com-

bined with a transformation into a sparse domain and an L1-norm

optimisation, constitutes a blind source separation algorithm for the

under-determined case.

I Introduction

We encounter a mixture of oriented lines in the
context of linear source separation, in which a set
of N sensor observations, X = (x(1) | · · · |x(T )),
consist of a linear mixture of M source signals,
S = (s(1) | · · · | s(T )), by way of an unknown linear
mixing process characterised by the N×M mixing
matrix A. These measurements may be corrupted
by additive noise ε,

x(t) = As(t) + ε(t) (1)

When N = M and ε ≈ 0 the underlying sources
can be recovered if one can find an unmixing ma-
trix W,

ŝ(t) = Wx(t) (2)

where ŝ(t) holds the estimated sources at time
t and W = A−1 up to permutation and scal-
ing of the rows. Time-sampled vectors x(t) and
s(t) are composed of samples x1(t), . . . , xN (t) and
s1(t), . . . , sM (t), respectively. In the oriented lines
separation case S can be thought of as individual
sets of one-dimensional data and X can be thought
of as a mixture representation of this data pro-
jected down to N -dimensions.

Linear mixing imposes a structure on the resul-
tant mixtures which becomes apparent when the
mixtures have a sparse representation. For sources
of interest (voice, music) this can often be achieved
by a transformation into a suitable basis such as
such as the Fourier, Gabor or Wavelet basis. The

existence of this structure can be explained as fol-
lows. Given a mixing matrix

A =

(

a11 a12

a21 a22

)

it is evident that if only one source is active, say
s1, then the resultant mixtures would be

x(t) =

(

a11

a21

)

s1(t)

therefore the points on the scatter plot of x1(t)
versus x2(t) would lie on the line through the origin
whose direction is given by the vector (a11, a21)

T .
When the sources are sparse, making it unusual for
more than one source to be active at the same time,
the scatter plot of coefficients would constitute a
mixture of lines, with the lines broadened due to
noise and the occasional simultaneous activity (see
Figure 1.) The line orientations correspond to the
columns of the mixing matrix A, so if the lines can
be estimated from the data then an estimate of the
mixing matrix can be trivially constructed.

An algorithm for identification of radial line ori-
entation and line separation is presented in Sec-
tion II. The application of the algorithm to blind
source separation of speech signals in both the
even-determined and under-determined case, along
with experimental results, are presented in Sec-
tion III.
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Fig. 1: Scatter plot of two linear mixtures of two zero-mean sources, in both the time domain (left) and the transform
domain (right). The “sparse” transform domain consists of the coefficients of 512-point windowed FFTs. The figures

axises are measured in arbitrary units of transform domain mixture coefficients.

II Oriented Lines Separation

a) Determining Line Orientation

The orientation of a set of data points can be de-
termined by a stochastic gradient algorithm [1,
page 133] which finds the principal eigenvector of
a data set. In order to identify various lines within
a dataset containing a mixture of lines, it would
be ideal to identify which data points come from
each line, and run the stochastic gradient proce-
dure separately on each segregated subset of data.
Of course such identifications are not available, so
instead we use a proxy by associating each data
point with the estimated line most likely to have
produced it (eq. 3). The stochastic gradient al-
gorithms for the various lines are then run in-
dependently, with each point contributing to the
estimation of the orientation of the line it is as-
signed to. Naturally these assignments change
as the algorithm iterates, because the lines them-
selves are moving as they adjust to match the
data. The stochastic gradient algorithm is ini-
tialised with line orientation vectors, vi, which are
drawn random on the unit N -sphere by sampling
an N -dimensional Gaussian and normalising the
resulting vector. The estimated mixing matrix Â
is formed by adjoining the estimated line orienta-
tions to form the columns of the matrix (eq. 5).

b) Data Point Separation

For the even-determined case where N = M the
estimated mixing matrix Â is square and the data
points can be assigned to line orientations using
(eq. 2). When N < M , the under-determined
case, A is not invertible so the sources need to
be estimated by some other means. One tech-

nique is so-called hard assignment of coefficients
using a mask [2, 3]. Another is partial assignment,
in which each coefficient can be decomposed into
more than one source. This is generally done by
minimisation of the L1-norm, which can be accom-
plished by formulating the problem as a linear pro-
gram.1 This can be seen as a maximum likelihood
reconstruction under the assumption that the co-
efficients are drawn from a distribution of the form
p(c) ∝ exp−|c|, i.e. a Laplacian [4, 5].

c) Algorithm Summary

We present an algorithm called Hard-LOST, for
Line Orientation Separation Technique. The pre-
fix “hard” indicates that data points are assigned
to lines using a winner-takes-all assignment. A dis-
cussion of hard and soft assignments is presented
by Kearns et al. [7]. The algorithm is composed
of a hard line orientation estimation subroutine
which is called by the separation algorithm.

1The solution can be found efficiently using linear pro-
gramming [6]. We introduce vectors c+ and c−, each with
the same dimensionality as c, and use the linear constraints

c+
, c− ≥ 0

Âc+ − Âc− = dj

The minimisation of ‖ĉ‖1 =
P

ij |ĉij | becomes the linear
objective

minimise
X

ij

(c+

ij
+ c−

ij
)

After solving this system, the desired coefficients are

ĉ = c+ − c−

When using complex data, as in the case of a FFT repre-
sentation, we treat the real and imaginary parts separately,
thus doubling the number of coefficients.



hard line orientation estimation

1. Randomly initialise the M line orientation
vectors vi.

2. Assign each data point dj , where dj = x(j),
to a line orientation vector using

zij = ‖dj − (vi(t) · dj)vi(t)‖
2 (3)

ẑij =

{

1 if ∀i′ 6= i, zi′j < zij

0 otherwise

ẑij is an indicator function for whether line i
is the closest line to data point j.

3. Determine the line orientation vectors using
the stochastic gradient algorithm with nor-
malising constraint ‖vi‖ = 1.

vi(t + 1) = vi(t) + γ(t)[yi(t)dj − y2

i (t)vi(t)]
(4)

yi(t) = vi(t)
T (zijdj)

where vi(t + 1) is the current estimate of the
direction of the data closest to line i and γ is
the learning rate of the algorithm. Perform
the calculation over all data points d1 . . .dT .
The line orientation estimates are taken from
the final results vi(T ).

4. Adjoin the line orientations estimates to form
the estimated mixing matrix.

Â = [v1(T )| · · · |vM (T )] (5)

This algorithm is a modified k-means procedure
[8] where line orientation vectors and distances
from a line replace cluster centres and distance
from the cluster centre. Previously this has been
accomplished using fuzzy C-means to cluster the
data following a projection onto a unit hemi-
sphere dj 7→ sign([1 0 · · · 0]dj)dj/‖dj‖, or vari-
ants thereof [9, 10].

Hard-LOST line separation algorithm

1. Perform hard line orientation estimation to
calculate Â.

2. For the even-determined case data points are
assigned to line orientations using (eq. 2).
For the under-determined case calculate coef-
ficients cj using linear programming for each
data point j such that

minimise ‖cj‖1 subject to Âcj = dj

The resultant cj coefficients, properly ar-
ranged constitute the estimated linear sub-
spaces,

Ŝ = [c1| · · · |cT ]

3. The final result is a M × T matrix Ŝ that
contains the line orientation data sets in each
row.

III Experimental Results

a) Hard-LOST in a BSS framework

The Hard-LOST algorithm is tested in a blind
source separation framework where source esti-
mates are analogous to decomposed linear sub-
spaces and instantaneous linear mixtures are anal-
ogous to line mixtures in N -space. The Hard-
LOST solution to BSS is

Hard-LOST for BSS

1. A N×T data matrix X(t) is composed of sen-
sor observations of N instantaneous mixtures.
The data is transformed into a sparse repre-
sentation, X(t) 7→ X(ω). M is the number of
sources expected and γ controls the conver-
gence rate

2. The Hard-LOST algorithm is performed on
the data X(ω). The algorithm estimates an
unmixing matrix that will allow individual
sources to be estimated from the mixtures.

3. The resultant M × T matrix Ŝ(ω) contains in
its rows the M estimated sources ŝ1, . . . , ŝM .
These estimates are then transformed back
into the time domain, Ŝ(ω) 7→ Ŝ(t).

b) Error Measurement

The Signal-to-Noise Ratios of the estimated
sources ŝi (in dB), SNRi = 20 log

10
‖si‖/‖ŝi − si‖,

are used to measure the performance of the above
algorithm.

c) Experimental Method

Speech signals (see Figure 2 and Appendix A) were
transformed using a 512-point windowed FFT and
the real coefficients were used to create a scatter
plot. Figure 1 illustrates that the transformation
results in sparse data, with the source line ori-
entations becoming more defined. A simple ex-
ample of a scatter plot for the under-determined
case is presented in Figure 3. The experiments
were coded for Matlab 6.5.0 and run on a 3.06
GHz Intel Pentium-4 based computer with 768MB
of RAM. Experiments for the under-determined
case typically took 30 minutes while the tests for
the even-determined case ran for less than 3 min-
utes. The effectiveness of separation in the under-
determined case where L1-norm minimisation was
used, is evaluated by presenting the algorithm with
the original A matrix used in the mixing process.
In these experiments the line orientation estima-
tion phase is skipped and the L1-norm minimi-
sation phase is tested separately. In general the
better defined the line orientations in the scatter
plot, the more accurate the source estimates. Ex-
periments were performed for a range of different
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Fig. 2: Ten-second clips of six acoustic sources. Sound
wave pressure is plotted against time and units are

measured in seconds (see Appendix A.).

values of N and M , and the parameter γ was var-
ied on an ad-hoc basis.

d) Results

Results are presented for a total of 18 experiments.
Data on the number of mixtures, sources used, and
the value of the learning parameter γ are contained
in the tables of results. Results in tables 1 and 2
demonstrate the effectiveness of the algorithm for
the even-determined case. Experiments for testing
line separation using L1-norm minimisation were
performed and their results are presented in ta-
ble 3. These experiments evaluate the effectiveness
of the separation phase of the Hard-LOST algo-
rithm in the under-determined case, and provide a
benchmark for the subsequent experiments.

Results for experiments that test both line orien-
tation estimation and line separation in the under-
determined case are presented in tables 4 and 5,
with some additional results in table 6. The Hard-
LOST algorithm was tested for robustness to noise.
Gaussian noise of various intensities was added to
the signals of the experiments in table 7, where
the noise introduced to each signal is measured in
terms of SNR values. These results, when con-
trasted with those previously presented, indicate
the algorithm’s robustness to noise.

The experimental results demonstrate that the
Hard-LOST algorithm is an effective technique
for BSS in both the even-determined and under-
determined case, even in the presence of noise.

IV Conclusion

The results presented demonstrate that a modified
k-Means procedure is able to identify scatter plot
line orientations, thus determining the mixing ma-
trix of a set of linear mixtures. It has been shown
that once the mixing matrix is found, sources can
then be separated by minimising the L1-norm be-
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Fig. 3: 512-point FFT Scatter plot for two linear mixtures
of three sources.

tween the data point being considered and the
line orientations represented by the columns of the
mixing matrix. The Hard-LOST algorithm pro-
vides a good solution to blind source separation of
instantaneous mixtures even when there are fewer
sensors than sources. The algorithm is scalable to
a large number of sensors and sources because L1-
norm minimisation can be reduced to a linear pro-
gramming problem. The experiments presented
are concerned with the specific problem of blind
source separation of speech signals, however the
results can be applied to any situation involving a
mixture of oriented lines.

We plan to extend the line orientation esti-
mation phase using a soft data point assignment
based on a modified EM algorithm, and to replace
the stochastic gradient calculation of eq. 4 with a
batch mode calculation based on covariance matrix
eigenvector decomposition.
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A Source Signals

The source signals were taken from a commercial
audio CD of poems read by their authors [11].
Such data is recorded as raw 44.1 kHz 16-bit stereo
waveforms. Prior to further processing ten-second
clips were extracted, the two signal channels were
averaged, and the data was down-sampled to 8
kHz. The scale of the audio data is arbitrary, lead-
ing to the arbitrary units on auditory waveform
samples throughout the manuscript.

s1 Coole Park and Ballylee, by William Butler
Yeats.

s2 The Lake Isle of Innisfree, by William Butler
Yeats.

s3 Among Those Killed in the Dawn Raid Was a
Man Aged a Hundred, by Dylan Thomas.

s4 Fern Hill, by Dylan Thomas.

s5 Ave Maria, by Frank O’Hara.

s6 Lana Turner Has Collapsed, by Frank O’Hara.


