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Abstract

This paper presents a number of proofs that
equate the outputs of a Multi-Layer Perceptron
(MLP) classifier and the optimal Bayesian dis-
criminant functionfor asymptoticaly large setsof
statistically independent training samples. Two
broad classes of objective functionsare shown to
yield Bayesian discriminant performance. The
first classare “reasonable error measures,” which
achieve Bayesian discriminant performance by
engendering classifier outputsthat asymptotically
equateto a posteriori probabilities. Thisclassin-
cludes the mean-sgquared error (MSE) objective
function as well as a number of information the-
oretic objective functions. The second class are
classification figures of merit (CFMono ), Which
yield a qualified approximation to Bayesian dis-
criminant performance by engendering classifier
outputsthat asymptotically i dentify themaximum
a posteriori probability for agiven input. Condi-
tionsand relationshipsfor Bayesian discriminant
functional equivaence are given for both classes
of objective functions. Differences between the
two classes are then discussed very briefly in the
context of how they might affect MLP classi-
fier generalization, givenrelatively small training
sets.

1 INTRODUCTION

Theuseof multi-layer perceptron (MLP) classifiersin statis-
tical pattern recognition requires that there be some mathe-
meatically defensiblelink between MLP outputsand thetrue
aposteriori probabilitiesassociated with theinput random
vector (RV) x being classified. We present a number of
proofs that detail the link for an N-output MLP classifier
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andtheN-classRV X, possessing an input feature space di-
mensionality of M. The number of classes N and thefeature
space dimensionality M of x are arbitrary, asisthe specific
parameterization (or connectivity) of the MLP classifier.
For our purposes the term “multi-layer perceptron” is used
to describe a backpropagation network using any continu-
ous sigmoidal nonlinearity, although the proofs herein can
be extended to networks employing other non-linearities.

Proofs of the relationship between both linear and non-
linear classifiers trained with the mean-squared-error
(MSE) objective function and the Bayesian discriminant
function are not new. Duda and Hart formulated the proof
for asimpleperceptronin[6] (pp. 154-155). Morerecently,
[1, 3, 7, 11] have given variations of the proof for M SE-
trained MLPs. We extend these proofsto theN-output MLP
classifier trained with any objective function belonging to
one of two broad classes. The proofs herein give detailed
relationships among the MLP outputs, the Bayesian dis-
criminant function, and the class conditiona densities of x .
In this sense, they have their conceptual basisin the proof
of [6].

We show that the MSE proofs of [1, 3, 6, 7, 11] pertain
to one specific member of a broad class of error measure
objective functions. This class of “reasonable” error mea-
sures yields MLP outputs that converge to the Bayesian
a posteriori probabilities P(wi | X) (where w; represents
theith class) for networkswith sufficient functional capac-
ity (see section 3.1.2) to classify asymptotically large sets
of statistically independent training samples. The M SE and
Cross Entropy (CE) [10] objective functions are members
of this class of functions!, as are other objective functions
stemming frominformationtheoreticlearningrules(such as
Maximum Mutual |nformation and Maximum Likelihood),
and the Kullback-Liebler distance measure. These reason-
able error measures all yield optimal Bayesian discriminant
performance?, given sufficient training data.

Istrictly speaking, the Cross Entropy objective function does
not require that MLP outputs be compared with binary target
values. Thus, it isfair to categorize the Cross Entropy objective
function in this way only when binary target values are specified
inits form.

2See section 2.



Giventheseresults, oneisinclinedto concludethat al these
objective functions yield equivaent classification perfor-
mance, and that al MLPs are — in effect — no more
than exotic estimators of Bayesian a posteriori proba
bilities. In fact, neither conclusion is correct. A broad
class of objective functions called “N-monotonic Classifi-
cation Figures of Merit” (CFMmono ) [8] are shown to ap-
proximate Bayesian classification performance under the
same conditions for which the reasonable error measures
yield Bayesian performance. However the CFM oo Class
of functionsdoes not produce MLP output activations that
reflect a posteriori probabilities P(w; | X) ; instead it asymp-
totically identifiesthe maximum a posteriori probability for
a given input P(wmax| Xp), @ long as Plwmax| Xp) > 0.5
(see section 4). Despite this limitation, [8] indicates that
CFM mono -trained MLPs can be more robust approxima:
tions to the Bayesian discriminant than their reasonable
error measure counterparts, given small training sample
sizes.

Whilethefindingsof [8] are not broad enough to be consid-
ered conclusive, they doargueagainst themaxim “all objec-
tivefunctionsyield equivalent classification performance,”
when one's training set is limited in size. Section 5 con-
tains some brief comments regarding the following proofs’
applicability to real-world classification problems. Partic-
ular attention is paid to how the different objective func-
tionsmight yield (or fail toyield) near-optimal classification
boundaries for small training sets. These observations are
madewithan eyetowardsfurtherinvestigationof MLP clas-
sifier generalization in the probabilistic context presented
by this paper.

By the “asymptotic behavior” of a classifier we mean its
behavior for an asymptotically large set of statistically in-
dependent training samples.

2 A GENERAL DESCRIPTION OF THE
N-CLASSPROBLEM AND THE
BAYESIAN DISCRIMINANT
FUNCTION

In this section we give a brief description of the genera
N-class problem and the Bayesian discriminant functionin
the context of the connectionist and pattern recognition lit-
erature. The syntax and notation used hereinisan expanded
version of that used in[6].

The N-class classification problem is depicted in Figure 1.
A random vector X isto be classified by a classifier with
parameterization specified by the state variable 8. The
classifier has N outputs, each one of which corresponds to
oneof N possibleclasses. Table 1 definesthevariables used
to describe the basic classification process. Simply stated,
the objective is to associate a particular sample of the RV
X — denoted x, — with the correct classw.. The method
for deciding the class of x,, yielding the fewest errors [6]
(pp. 16-20) can be stated ssimply:

associatex, withtheclassw, that hasthelargest
a posteriori probability:

P(we|Xp) = P(wmax| Xp) > P(wj|Xp) Vj#c

In simple terms, any function that implements this clas-
sification procedure constitutes the Bayesian discriminant
function.

Clearly, being abletoestimatea ! N P(w; | Xp) accurately for
each and every x, allows one to implement the Bayesian
discriminant function. Indeed, a large number of pattern
classifiers do precisdly this. The degree to which they
succeed in the classification task is directly related to the
accuracy with which they estimate the a posterioris. An-
other perhaps less obviousway to implement the Bayesian
discriminant function is to consistently identify the largest
P(wi | Xp) for each and every x, — anapproach that doesnot
require accurate estimation of the a posterioris. The salient
point hereisthat whileaccurate estimation of the a posteri-
orisissufficient for Bayesian discriminant performance, it
isnot necessary. All that isnecessary for Bayesian discrim-
ination is accurate identification of the largest a posteriori.

These two approaches to implementing the Bayesian dis-
criminant function lead to two broad classes of objective
functionsthat one can useto train the classifier in Figure 1:
the class of “reasonable error measures’ achieves Bayesian
performance by explicitly estimating the a posterioris as-
sociated with the input x,, , while the Classification Figures
of Merit (CFM mono ) achieve Bayesian performance by esti-
mating theidentity of the maximum a posteriori probability
P(wmex| Xp)-

3 REASONABLE ERROR MEASURES:
BAYESIAN PERFORMANCE VIA
ACCURATE ESTIMATION OF A
POSTERIORI PROBABILITIES

The first class of objective functions that yield Bayesian
discriminant performance comprises those error measures
engendering classifier outputsthat are true estimates of the
aposteriori probabilities P(wi | Xp). The necessary and suf-
ficient conditions on the form of these functions are given
below, followed by a number of familiar examples of the
class and detailed proofs of their asymptotic Bayesian per-
formance.

3.1 THE NECESSARY CONDITIONSFOR
REASONABLE ERROR MEASURES

Consider a class of error measures E[Oi(Xp, 8), Di(Xp)]
that give the “loss’ of a single output O;(xp, 8) when its
desired or “target” activationisD;(X,). Tablesland2 define
the symbolsused to derivethisclass of error measures. The
concept of a prototype of x introduced in these tabulated
definitions warrants explanation.



Table 1: Definitions of symbols used to describe the general N-class classification problem.

Symbol  Definition

X TheRV to beclassified.

O; Theith output of the N-output classifier.
wij Theith of N classes to which x can belong.
Xp  The pth unique sample (or prototype) of x.
6 The parameterization of the classifier. In the case of an MLP
classifier, 8 would represent the connections of the network.

The ith output of the N-output classifier, given the input x, and

The a posteriori probability of theith class (wi), given theinput

Oi(xpa 0)
the classifier parameterization 6.
P((.ui | Xp)
Xp-
P@i[xp) 1 — Pwi|xp).
p(X | wi)

3.1.1 Prototypes: boundson the complexity of the
class-conditional densities of the RV x

A prototypeisauniquesamplex, of theRV x. Thus, if one
obtains two identical yet statistically independent samples
of the RV x, these samples are two instantiations of the
same prototype. The notion of obtaining more than one
statistically independent sample of x with the exact same
value x,, is difficult to envision — even for large training
sets. However, if one considers regions on the domain
of x over which the class-conditional densities p(x | w;) are
essentially constant for all classes, one can associate each of
these regionswith a prototypical vaue of Xx. The prototype
for the pth of such regions is given by x,. For an input
feature space of dimensionaity M and a sufficiently large
number of statistically independent samplesof x , onemight
envisionan (M+1)-dimensional histogram of thesamplesas
an embodiment of this concept of prototypes. Such aview
is consistent with the limited resolution of data acquisition
systems used to measure real-world RV's.

Clearly this view of regions on x with constant class-
conditiona densities places an implicit restriction on the
probabilistic nature of x. A simple yet elegant description
of a 2-class problem (N = 2) involving a 2-dimensional
RV x (M = 2) that does not have a bounded number of
regions of constant class-conditional density is illustrated
by thefollowing: if oneenvisionsatwo dimensional fractal
coastline forming the boundary between land and sea, one
findsthat in the vicinity of the boundary (shore line) there
is no observation scale large enough to yield a bounded
number P of regions x, withinwhich p(x |w;) is constant
on all sub-regions of each x, for both classes. TheRV X is
therefore not “well behaved”. Obvioudly, if x comprises a
finitenumber of discrete states, thenit will bewell behaved.

The necessary conditionsfor reasonable error measuresthat
follow — and al subsequent proofsin this paper — rely on
thisnotion of prototypes. We assume that the RV x iswell-
behaved to the extent that P is bounded. This restriction

The “class conditional” probability density function (PDF) for
theRV x (given classwj).

places somelimit on the compl exity of the class-conditional
densitiesof x that one can expect to model accurately using
an MLP classifier — an issue that we discuss further in
section 5.

3.1.2 Thereasonable condition

In general, we assume that the outputs of the classifier are
bounded on the closed interval [0,1], that thereis minimal
loss incurred when the output equals its target value, and
that there is a symmetry to the loss function:

O S Oi(xpa 6) S 1 VXD: 6 (1)

Elz. < €&ly#z 7 (2

E[Oi(Xp, 6), Di(Xp)]
= E[Di(xp) — Oi(Xp, 8), Di(Xp)] ©)
The symmetry constraint of (3) can be taken to mean that

the reasonable error measure is a function of the absolute
difference between the output and its target:

E[Oi(xp, 8), {D}] = T(|Oi(xp, ) — {D}]) (4)
where _
{D} = Di(xp) or Di(xp)

Furthermore, if we choose binary targetsfor our error mea-
sure (whichincidentally correspond to the upper and lower
bounds on the classifier outputs)

Di(Xp)

_ ©)
Di(Xp)

Hne nup

then (4) leadsto the following functional description of the
reasonable error measure;



Table 2: Definitions of symbols used to derive reasonable error measures.

Symbol  Definition
i index denoting MLP outputi of N, associated with class w.
N thetotal number of classes.
p index denoting the pth prototypeof x.
P thetotal number of prototypeson the domain of x.
N thenumber of statistically independent occurrences of prototype
Xp belongingto classwi.
Ny thenumber of statistically independent occurrences of prototype
Xp not belongingto class w.
Ny Npi + Ny thetotal number of statistically independent occur-
rences of prototypex, in thetraining set.
N > p Npi: thetotal number of statistically independent samples
in thetraining set belonging to class wi.
n > Ny the total number of statistically independent samples
in thetraining set not belonging to class w;.
Nt >.p Np: thetotal number of statistically independent samples
in thetraining set.
Di(xp) Thetarget valuefor Oi(xp, 8) whenx, belongsto classw;.
Di(xp) Thetarget valuefor O;(x,, 8) whenx, does not belong to class

E[0i(xp, 8), Di(xp)]

E[Oi(xp, 6), ﬁ(xp)]

E[Oi(xp, 0), Di(xp)] =

f(1— Oi(xp, 6))

Wj.

Tlhe error measure (or loss) for output O;(xp, 8) when its target
valueisDi(xp) (i.e., when x, belongsto classw;).

The error measure (or loss) for output O;(xp, 8) when its target
valueisDi(xp) (i.e, when x, does not belong to classw).

(6) lim & =

Nt— 00

N P
>3 Pp) {Pwi | Xp) - T (1— Oi(xp, 6))

E[O0i(Xp, 6), Dixp)] = f(Oi(%p, 6))

Using the definitions in tables 1 and 2 with (6), we can
express the average error produced by n; samples of x.
Note that these n; samples are grouped into P prototypes;
thereare n, samples of the pth prototypex,:

i - T(1—0i(Xp, 9))

“ g 1 (O )} ™

Equation (7) can be restated as

N P
s L
DI {2 ra-o00 0

LR o»} @®

Np

Thelaw of large numbers|eadsto the following asymptotic
form for the average error:

i=1 p=1

+P@i | xp) - f(Oilxp, 6))} (9)

A necessary and sufficient condition for minimizing £ in
(9)is|Vo&| = 0, which requires that

d - = ,
O ; P(p) {—Plwi [%p) + (1= Oi(xp, 6))
+ P(@i | %p) - T/(Oi(%p, 6))}
= 0 Vi (10)
where
vy & d
AR
Equation (10), inturn, is satisfied if
F'(Oixp, 6))  _ Plwilxp)
f/(1— Oi(Xp, 6)) P@i | Xp)
Peilx) gy ay)

1 — P(wi | Xp)



Note that (11) is both a necessary and sufficient condition
for satisfying (10) for all possibledistributionsof x, (which
are directly related to the class-conditional densities of x
(see section 3.1.1)). While it is possible to satisfy (10)
without satisfying (11) for some distributions of x, (e.g.,
some sets of class-conditional densities {p(x|wi) }), (11)
must hold for (10) to hold independent of {p(x |wi) }. Asa
trivial example, if P(x,) werezero for all but one prototype,
satisfying (10) would require satisfying (11).

Clearly, the Hessian of the average error (Ho £) must be
positive definitein order for (11) to yield a minimum aver-
age error:

Ho&| > 0 (12)

Onecan show that if £ in (4) isastrictly increasing function
of |Oi(Xp, 8) — {D}/, (12) will hold.

Equations (11) and (12) ensure a minimum of £ but they
place no explicit condition on the form of O;(x,, €). Since
wewishtheoutputsof theclassifier to equal thea posteriori
probabilities, we can assure this equivalence by constrain-
ing the reasonable error measure's functiona form based
on (11):

(@

fr (o) = 10

f'(1-0) 0<O <1 (13)

Any function satisfying the conditions of (3) — (6) and
(10) — (13) is areasonable error measure. Such a measure
will yield classifier outputsthat asymptotically equatetothe
a posteriori probabilities P(w; | x), provided the functional
capacity of theclassifier (i.e., theclassifier’sability tomodel

thefunctionthat mapstheRV x tothea posteriorisP(w; | X)

for &l x,), embodied in the parameterization variable 8, is
at least as great asthecompl exity of al the class-conditional
densities p(x | wj). This statement relies on the assumption
that these class conditional densities are restricted to those
that are well behaved (see section 3.1.1). This, combined
with the finding that a MLP with a single hidden layer of
adeguate connectivity can — under mild constraintsconsis-
tent with our assumptions — approximate any continuous
function mapping x onto the N-dimensional hypercube[4],
assures that there exists a MLP that will accurately model

the Bayesian discriminant functions of any well-behaved
X, given asufficiently large set of statisticaly independent
training samples.

Finally, one can show that any positively scaled reasonable
error measures is, itself, a reasonable error measure. That
is, if f1(O) isa reasonable error measure, then af1(0)
will aso be reasonableif a > 0.

3.2 THE GENERAL REASONABLE ERROR
MEASURE APPROXIMATION TO THE
BAYESIAN DISCRIMINANT FUNCTION

If one defines the Bayesian discriminant function for theith
of N possible classes as

G(x) 2 Pwi|x) (14)

where
N

PX) = > P(x|w) (15)

=1

one can define the reasonable approximation error for the
ith discriminant function as

A
€ =

/X [f(L— Oi(x, 8) - Gi(¥)
HHO 8) - (L — g0 px) dx (16)

Additionally, one can define the aggregate reasonable ap-
proximation error as

€ = ZG (17)

Given (9), one can express the asymptotic average rea
sonable error of the training set. One can in turn express
the asymptotic average reasonable error in terms of the
aggregate reasonable approximation error to the Bayesian
discriminant function expressed in (16) and (17). Dudaand
Hart first showed such a relationship for the simple per-
ceptron trained with the M SE objectivefunctionin [6] (pp.
154-155). The symbol “<" should be read as, “asymptoti-
caly equals.”

p

N
JimE = 3 P) D {Plwilxp) - f (L= Oilx, 6))

p=1 i=1
+ P@i| Xp) - f(Oi(Xp, 0))}
P N

= Z E {P(wn Xp) - £ (1= 0i(xp, 6))
p=1 i=1

+ P@i, xp) - f(Oi(Xp, 6))}

N
> {P@)E[f (1- Oi(x, 8))|wi]
i=1
+ P(@i) E [f (Oi(x, 6))|@i] }

N
%1: {/Xf (1—Oi(x, 8)) - p(x|wi)
- P(wj) dx

X



v [ 100 8- ox|20) - Pe@) dx}
X

N
= f — (X, ,wid
213{/X (1— Oi(x, 6)) plx, wi) dk

f(Oi(x, ,wi)d 8
v [ 1 o) stx ) o} (18
Since
d
px, wi) = ax P(x, wi)
_d
= i P(wi, X)
_d ,
i [P(wi |X) - P(X)]
= Pwi]x) - p(x) (19
and
p(X, @) = P@i|x) - p(x) (20)
one can re-state the expression of (18) as
e =
N
{/ f(1— Oi(x, 0)) P(wi|X) - p(x) dx
i=1 /X
v [T oy @I - o
o K [f @@= 0i(x, 6)) - gi(x)
i1 | +f(Oi(x, 8) - (1 — gi(x)] p(x)dx
= € (21)

Clearly then, minimizing the reasonable error measure of
(7) a'so minimizes the reasonable approximation errors of
(16) and (17). In order for ¢ in (17) and (21) to be zero, it
is necessary that the MLP's functional capacity exceed the
functional complexity of all the class-conditional densities
p(X|wj) (seesection 3.1.2).

3.3 SPECIFIC EXAMPLESOF REASONABLE
ERROR MEASURES

One family of reasonable functions, which can be derived
by inspection of (13), is

f(O) = /Of(l - 0)~ldo (22)

This family has two specia cases of great practical impor-
tance.

3.3.1 r=0: Information Theoretic objective functions

One function that satisfies the reasonable conditionsis

f(O) /(1 - 0)"tdo

—log(1 — O)

(23)

— the functional expression used to implement the Cross
Entropy, Maximum Mutua Information, Kullback-Liebler
distance, and Maximum Likelihood objective functions
[7,10].

332 r=1: Mean Squared Error

The MSE objective function is also aspecia case of (22):

/Od(’)

_ 1.
= 50

f ()

(24)

34 SOME “UNREASONABLE” ERROR
MEASURES

Obvioudly, any objective function which does not satisfy
the necessary reasonabl e conditionswill bean unreasonable
functionfor estimating a posteriori probabilities. Neverthe-
less, many such unreasonabl e error functionswill still yield
asymptotic Bayesian discriminant performance. If its out-
puts asymptotically reflect the correct ranking of the a pos-
terioris, an unreasonabl e error measure will yield Bayesian
discriminant performance. We discuss two classes of ob-
jective functionsthat are unreasonable.

3.4.1 Minkowski-Rerror measures

When the objectivefunctionis of theformf (0) = OR —
which correspondsto aMinkowski-R(Lg) metric[9] — one
finds that the reasonabl e conditionis satisfied only when

o
1-0
(1 _ O)R—Z

(1 - O)R1

G
py)
o

]

orR=2 (r =1, insection 3.3.2). Another perspectiveis
that £ isminimized when

Oi(xp, 6) = \/P(Tlxp) ' [\/P(?W)



which simplifiesto Oj(Xp, 8) = P(w; | Xp) only whenR= 2
(note that the L, metric is the MSE objective function).
Since an Lg metric is reasonable only when R = 2, this
argues against using Lg metrics other than L, when the
output of the classifier isbeing interpreted as an a posteriori
probability.

Figure 2 gives an intuitivefeel for how various Lg metrics
bias the output O;(x,, 8) towards certainty (for R — 1),
or away from it (for R — o0): the minimum error vaue
for Oi(xp, 8) is plotted as a function of P(w; | Xp) for var-
ious values of R. It should be noted that while Lr metrics
are generally not reasonable error measures, they doin fact
yield classifier outputs that asymptotically reflect the cor-
rect ranking of a posteriori probabilities® Strictly spesk-
ing, they will yield Bayesian discriminant performance, and
one can defend their usein training classifiersif the biases
towards or away from certainty depicted in Figure 2 are not
excessive for one's application.

3.4.2 Error measureswith non-binary targets

Another class of unreasonable error measures is found if
one empl oysotherwise reasonabl e error measures with non-
binary targets {D}. In such cases the resulting error mea-
sure will not be reasonable. Whether or not the resulting
error measure reflects the correct a posteriori probability
rankings depends on the choice of non-binary targets. We
illustratethispointinthefollowingsectionsaswe derivethe
approximation error to the Bayesian discriminant function
for the M SE and information theoretic error measures.

3.5 THE MSE APPROXIMATION TO THE
BAYESIAN DISCRIMINANT FUNCTION

Using (16), one can definethemean-sgquared approxi mation
error for theith discriminant function as

[ {100 - s’
—gi(x)? + gi(x)} (x) dx (25)

Additionally, one can define the aggregate mean-squared
approximation error as

€ = Zei (26)

One can express the average mean-squared error of the
training set as

P N
MSE ni 3 E{np. - [0i(xp, 8) — Di(x)]’

p=1 i=1

3Thisis because O (xp, 8) is asymptoticaly astrictly increas-
ing function of P(wi | Xp).

+n; - [Oi(xp, ) — 77i(Xp)]Z} (27)

Following the litany of section 3.1.2, one can express the
asymptotic average mean-squared error as

lim MSE =

Ng— 00

P N
> P Yo Pl x0) (0105, 6) — Di(xp)]®

p=1 i=1
+P@ %) - [0i0) — Di0e)]°} (28)

From thisasymptoticform, one can show that the necessary
condition for minimum MSE is

lim Oi(xp, €) =
ng— 00

Di(%p) - Pwi |Xp) + Di(Xp) - P@i|Xp) ¥x%p(29)
For the case in which binary targets as specified in (5)
are used, the M SE objective function constitutes a reason-
ableerror measure, and the classifier outputsasymptotically
equate to the a posterioris. If P; and D; are both set equal
to the same value ontheclosed interval [0, 1], thiswill lead
toamost undesirableasymptotic statein which all classifier
outputs converge to D; — a state of complete uncertainty
analogousto that attained by the Minkowski-Rerror metric
Lo,. For the case in which D; > D; and both targets are
non-binary on [0,1], one finds that O;(x,, €) is no longer
an accurate estimate of P(w;j | Xp) , although it does remain
astrictly increasing function of P(w; | Xp). For the bizarre
case in which D; < Di, Oji(Xp, 8) becomes a strictly in-
creasing function of P(@i | Xp) (or 1 — P(wi|Xp)). Figure3
illustratesthe effect of different target val ues on the asymp-
totic value of Oi(xp, 8) plotted as a function of P(wi | Xp).
Aswe shall see inthe next section, thisfigureisrelevant to
information theoretic objective functionsas well.

Returning to (28) one can derive the asymptotic mean-
squared error (binary targets: D; = 1, D; = 0) intermsof the
aggregate approximation error to the Bayesi an discriminant
function (expressed in (25) and (26)). Using derivational
procedures anal ogous to those of equations(18) —(21), one
finds

Aim MSE =
P N )
> P) Y Pl %) - [01(x5, 6) — 1]
p=1 i=1

+ P %) - Oil%)’ |

X

XN: {P(wi) E [(Oi(X, 8) — 1) M]
i=1



+P@) E [(Oi(x, 9))2 |w_i] }

N
= iX, — 2 ,wid
i§=1j{/x(c9(xt9) 1 p(x, wi) o

i(x, 8)% p(x, @) d
+/X(9(x 6) p(x )x} (30)
N

= Z{/X [(’)i(x, 8 — 20i(x, 0) + 1]

i=1

i) p(x) dx
. 2 _ .
+ /X Oi(x, ) [1 — a(x)]

- p(X) dx} (31

N
=3 { | 0t 2 ) o
i=1

2 / O(x, 8) Gi(x) p(x) dx
X
+ [ 9t 09 dx}

lim MSE =

Nt— 00

N Jx [0i(x, 8) — gi(X)]2 p(x) dx

=L =[x (@) px) dx + Plwi)

€

(32)

- €

Thisresult isthe MLP analog of Dudaand Hart’s result for
the M SE-trained perceptron ([6], pp. 154-155). A compar-
ison of (32) and (25) confirms that each of the N termsin
(32) isequivalent to the mean-squared approximation error
term of (25). Thus, minimizing the M SE objectivefunction
of (27) (binary targets) aso minimizes the mean-sguared
approximation errors of (25) and (26). Note that only the
first termin (32) depends upon the output activations O; of
the MLP. In order for ¢ in (26) to be zero, it is necessary
that the MLP's functional capacity exceed the functional
complexity of all the class-conditiona densities p(x | wj)
(see section 3.1.2).

Equation (32) illustrates the manner in which MSE is min-
imized during classifier training. The mean-squared ap-
proximation error term (¢) indicates that MSE is in fact
aweighted integral sum of the squared errors between the
MLPoutputs®; andtheir corresponding discriminant func-
tions. The weighting factor is p(x) . Theform of ¢; in (32)

indi catesthat the approximation error minimization process
focuses on themode(s) of x , where p(x) islarge. Thisissue
isdiscussed further in section 5.

3.6 INFORMATION THEORETIC
APPROXIMATIONSTO THE BAYESIAN
DISCRIMINANT FUNCTION

Reference [7] shows that the information theoretic learn-
ing paradigmsof Maximum Mutual Information, Kullback-
Liebler distance, and Maximum Likelihood lead to a rea
sonabl e error measure known in the connectionist literature
asthe Cross Entropy (CE) objectivefunction[10]. Thiser-
ror measure applied to a single input sample x, belonging
to classw; isexpressed by

CE 2
N
=" {Di6x) 10g {0105, )}
i=1
+ (1= Dibxp)) log {1 — Oilxp, )} (33)

Given the Bayesian discriminant functions of (14), one can
define the cross-entropy approximation error for the ith
discriminant function as

1

_/ [gi(x) log{Oi(x, 6)}
X

+ (1 - g() log{1 — Oi(x, )} p(x) dx
(34)

The aggregate cross-entropy approximation error is then
given by

N
€ = Z € (35
i=1

Given the definitions of tables 1 and 2, one can express the
total cross entropy of thetraining set as
CE £
S
Nt 1
+ (1 = Di(xp)) log{1l — Oi(xp, 6)}]
+n; - [Di(xp) 10g{Oi(xp, 8)}

+ (1 — Di(xp)) log{1l — Oi(xp, 6)}]} (36)

N
3 {n - (D) 109 {01060 )

i=1



Following the litany of section 3.1.2, one can express the
asymptotic cross entropy as

lim CE =

ng— 0o

P N

= Pxp) Y {P(Wi [%p) [Di(xp) l0g {Oi(xp, 6)}
p=1 i=1

+ (1 _ Di(xp)) log{1 — Oi(Xp, 9)}]

+P@i | Xp) - [Di(xp) 10g{Oi(xp, 6)}

+ (1 — Di(xp)) log{l — Oi(Xp, 9)}]} (37)

From thisasymptoticform, one can show that the necessary
condition for minimum Cross Entropy is

nIi_»rro1O Oi(Xp, 8) =
Di(Xp) - Plwi|Xp) + Di(Xp) - P@i|xp) Vxp(38)

— precisely the same condition required for minimizing
the M SE objectivefunction. For thisreason, the comments
following (29) and Figure 3 accurately describe the depen-
dence of information theoretic classifier outputs on target
values: binary targets yield classifier outputs that asymp-
totically equate to the a posterioris P(wi | Xp).

Returning to (37) one can derive the asymptotic Cross En-
tropy (binary targets: D; = 1, D; = 0) in terms of the ag-
gregate approximation error to the Bayesian discriminant
function (expressed in (34) and (35)). Using derivational
procedures anal ogous to those of equations(18) —(21), one
finds

im, CE =
P N
=" P) D {Pwi %) 1091010, 6))
p=1 i=1
+ P@i|xp) log{l — Ok, O)} ) (39)

X

N
_ Z {P(wi) E [log{0i(x, 6)} |wi]
i=1

+ P@) E[log{1 - 0i(x, 6)} |1 }

N
- 21: {/x log {Oi(x, 8)} p(x, wi) dx

+ / log{1l — Oi(x, 8)} p(x, wi)dx}
X

lim CE =

N
| Tog (010x, 6)) Pt %) ) o
1 X S—

gi(X)

+ / log{1 — Oi(x, 8)} P(@i|x) p(x) dx

X S——

1-giX)
(40)

= ¢
A comparison of (40) and (34) confirms that each of the N
termsin (40) is equivalent to the cross entropy approxima-
tion error term of (34). Thus, minimizing the cross entropy
objective function of (36) (binary targets) also minimizes
the cross entropy approximation errorsof (34) and (35). As
with the MSE objective function, it is necessary that the
MLP's functional capacity exceed the functional complex-
ity of all the class-conditional densities p(x |w;) in order
for ¢ in (35) to be zero (see section 3.1.2).

Notethat CE, much like its M SE counterpart, isaweighted
integral sum of the cross entropy between between the
MLP outputs O;(xp, €) and their corresponding discrim-
inant functions. As with the MSE objective function, the
form of ¢ for the CE objective function in (40) indicates
that the approximation error minimization process focuses
on the mode(s) of x , where p(x) islarge (see section 5).

4 CLASSIFICATION FIGURES OF
MERIT: LIMITED BAYESIAN
PERFORMANCE WITHOUT
EXPLICIT ESTIMATION OF A
POSTERIORI PROBABILITIES

The N-monotonic CFM objective function [8] is given by

A1l P N
CFMmono = = S {ng

co[Aixp, 0)] ) (41)

Ay, 8) = 0%, 6) —maXOpalx,)  (42)
Thus, for n,; cases of the prototype x, , output O;(x,, 6)
represents the correct class wj, while output Ojx(xp) is
the most active output representing an incorrect class wix .
The function o [Aj(xp, 6)] is typicaly a strictly increas-
ing continuously differentiable function of Aj(xp, 8). The
asymptotic form for CFMmono IS

lim CFMuyono =

Nt— 00



Table3: A ranking of the N a posterioris (and their corresponding CFM terms) of CFMmono (Xp) in (43).

Plwra [ Xp) | An(Xp, G)J ) 7(On — Orp)
P(wrz | Xp) o Arz(Xp, 0) 0'(% — Orl)
P(wrg | Xp) o [Arg(Xp, 0)] _ 0'(% — Orl)
P(er\.l | Xp) o [ArN(.Xp, 9)] ) 0'(% .— Orl)

p

>

p=1

N
Pxp) > P(wilxp) - o[Ai(xp, )] (43)

i=1

CFMmono (Xp)
N

" ERE X - o[Ax, 6)]]

i=1

N
le Ai‘”:;(')_x)/”[Ai(x’ 8)] p(x)dx  (45)
gi

X

(44)

Because o[A] is a dgrictly increasing function of A,
o'[A] > 0 and it is impossible to find the maximum
of (43) by solving for the zero of itsgradient with respect to
the outputs {O}. Furthermore, the identity of Ojz(xp) in
(42) isstochastic, so (43) isnot acontinuoudly differentiable
function of theclassifier outputs. Asaresult one cannot an-
alyticaly determine the maximum CFM o0 Values of the
classifier outputs O;(x, 8). Nevertheless, itisuseful to con-
sider how CFM yono (Xp) — the CFM for asingle prototype
Xp — in (43) ismaximized. Table 3 depicts the a posteri-
orisand N CFMono (Xp) terms from (43) associated with
the prototype x,. The a posterioris are ranked in decress-
ing order; their associated CFM pono terms are ranked in the
same order. Thus P(wr1 | Xp) isthelargest a posteriori for
Xp While P(win | Xp) isthe smallest, and o [Ar1(Xp, 6)] is
the term involving output O; and its largest competitor
Ors.

We wish to show that if the a posterioris are ranked as
shown intable 3, then the classifier output 01 (underlined
in the last column in table 3) corresponding to class wy
will bethe most active of all outputswhen CFM mono (Xp) iS
maximized.

41 ASYMPTOTIC PERFORMANCE OF
CFM mono FOR o[ A] = u[4]

Figure 4 illustrates three different functions (normalized
so that —1 < o[A] < 0) one might use to implement
CFMmono. The first of these functions is the Heaviside
step function (denoted by u[A]). Clearly thisfunction is
an exception to the genera rule stating that CFM 1on0iS
astrictly increasing continuously differentiable function of
A. Thisfunctiona formisof interest for two reasons. First,
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it is the MLP anadlog of the origina perceptron learning
criterion (eg., [6], pg. 141); second, it leads to a very
simpledetermination of the maximum CFM mono (Xp) Values
for the classifier outputs. When this objective function is
used to implement CFMono l€8rNiNg, one can see readily
from table 3 that CFM 000 Will be maximized if output O,
is marginally bigger than any of its competitors. Because
u[A] =0 V A # 0, there is no numerica incentive for
Or1 to be made any more than marginally larger than its
competitors. Therdativeactivation of outputs O, — Oy
is irrelevant beyond their being less that ;1. Thus, the
Heaviside step functiona form of CFM o0 implementsthe
Bayesian discriminant function — albeit marginally — for
asymptotically large training sets.

42 ASYMPTOTIC PERFORMANCE OF
CFM 1100 FOR STRICTLY INCREASING
DIFFERENTIABLE FUNCTIONS OF A

In practice, learning with a discontinuous o[ A] like the
Heaviside step isunstable. One can achieve stablelearning
using strictly increasing continuously differentiable func-
tions of A [8]. One can anayze the asymptotic behavior
of these functions by considering their effect on a set of
classifier outputsin the initia equilibrium state for which
all outputs are equal. If we define o as the value of the
CFMmono function o[ A] when itsargument A = 0, and o}
asthederivativeof the CFM ono function at this same point
(see inset in Figure 4), we can observe how the outputs
will be perturbed from the equilibrium point as CFM mono IS
maximized. A differential positive change in the value of
Oy resultsin achange to the over-all CFM oo Of

dCFM rono (Z =0 _
dorl T
0o - Plwr1|Xp) — og - P(@r1|Xp)

(46)

> 0 iff Plwr|Xp) > P@r|Xp)
or Plwri|Xp) > 05

A differential negative change in the value of O results
in a re-ordering of the output rankings; 0,1 becomes the
least activeoutput (all the other outputsremain unchanged),
so al the terms in the right-most column of table 3 are



altered to reflect this change in the identity of the most
active competitor (refer back to (42)), and the net changein
CFMonoisgiven by

dCFM ono (A = 0)
dOrl l

—ol - Plwr|Xp) < 0 (47)

One can show that adtering any of the outputs
Or2, O3, ...On independent of any alterationto O,; from
the equilibrium point always results in a net reduction in
CFM mono

AdCFMpono (A =0)

dOyjzr1 1
—0g - Plwrj [%p) + o¢ - P@r]%p)
< 0 (48)
dCFMimono (A = 0
mono (A4 =0) _ —ol - Plwg %) < 0 (49)

dorj #rl l

Equations (46) — (49) do not indicate what the optimum
valuesfor O3 — Oy arewhen P(wiq | Xp) > 0.5. These
optimal values depend on the specific functiona form of
o[A]. When ¢[A] is alinear function of A, the optimal
values of theoutputsare Oy; = 1and Oyj2,1 = 0. Non-
linear functional forms (such as the “maximally flat” one
shown in Figure 4) tend to produce non-binary outputs
O < 1and(9,j¢r1 > 0.

Equations (46) — (49) show that the equilibriumpoint yields
sub-optimal CFMono ONly if the largest a posteriori is
greater than 0.5. Since the class boundaries for an N-
class problem are defined as the connected set of points
onx at which all non-zero a posteriorisare equal, continu-
oudly differentiable CFM yono functionswill (in theory) fail
to form decision boundariesin regionson x wherethereare
more than two non-zero a posterioris for asymptotically
large training sets. Moreover, these equationsindicate that
continuoudly differentiable CFM oo functions will set al
classifier outputs equa in al regions on x where no a
posteriori exceeds 0.5 — conceivably a large fraction of
the domain of x when the number of classes N is large.
While these asymptotic limitations would seem to render
the CFM mono Class of objective functionsuseless for classi-
fication, in practice the functions compare quite favorably
with reasonable error measures. Equation (44) may provide
some insight into this apparent inconsistency.

Using the definition of correlation (denoted by ¢), we can
define the correl ation between the ith CFM jono term and its
corresponding a posteriori by

0i(6) =
(E [P(wi |X) . U[Ai(X, 0)”
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— E[Pwi|x)] E[e[Ai(x, 6)]])
- (Var [Pwi [X)] - Var [o[Aix, 8)]]) Y (50)

Asaresult, it ispossibleto express (44) as

CFMmono =<

] { Var [P [X)] - 6i(6) - \/Vr [7[2i(x, 0)]]

2

i=1

+ P(wi) - Efo[Ai(x, a)]]} (51)

Since the terms \/Var[P(wj | X)] and P(w;) are not func-
tions of the classifier's parameters 6, they are constants
vis-avis optimizing CFMyonoin (51). Thus, maximiz-
ing CFM ono tends to maximize the correlation between
P(wi |X) and o[Ai(x, 6)] , dong with the expectation and
variance of o[Aj(x, )] for each classw; over the entire
domain of x. In fact empirica studies bear thisout. Clas-
sifiers trained with CFM mono Objective functions and rela
tively small sets of statistically independent samplestend to
yield outputswith higher variance than their reasonable er-
ror measure counterparts; CFM mono -trained classifiers also
tend to yield multiple outputs with high activations when
uncertain as to the class of atest sample. There is strong
correlation between P(wi | X) and o [Ai(x, 8)] asindicated
by the CFM oo Classifiers’ median error rate of 1.5% on a
speaker-dependent /b,d,g/ phoneme recognition task [8].

5 COMMENTSONTHE

APPLICABILITY OF THESE PROOFS
TO THE STUDY OF
GENERALIZATION IN MLP
CLASSIFIERS

When one sets out to classify an RV x, the total num-
ber of statistically independent training samples n; and the
functional capacity (denoted by 6 ; see section 3.1.2) of
one's classifier are two factors that will determine in large
part the classifier's ultimate performance. We reproduce
expressions for the M SE and information theoretic reason-
able error measures and the analogous expression for the
CFM nono Objective functions in order to illustrate the im-
portance of these factors. Probabilities that rely on the
asymptotic statistics of the training data are now presented
as estimates (denoted by brackets“()”) of thetrue underly-
ing probabilities:

MSE <



N
/ Oi(x, ) — (Pwi|X)| (o)) dx
i=1 X S——
gi(X)
- / (Pl [0)?) (p(x)) lx
X SN
gi(X)
+ (P(wi)) (52)

CE <
N

_Z/X

(P(wi [ x)) log{0Oi(x, 6)}
i=1 —

gi(X)
+ [ 1= (PwilX) | log{1 - Oi(x, )}
——
ai(X)
-(p(x)) dx
(53)
CFMmono =
N
le /x<&,|1)/> - o[Aix, 8)] (p(x)) dx  (54)

gi(X)

Equations (52) — (54) indicate that the optimization of al of
these objective functions depends on accurate estimates of
thea posterioris and PDF of x — functions of thetraining
set itself. Optimization also depends on sufficient func-
tional capacity in 8. Finaly, optimization — and thereby
approximation of Bayesian discriminant performance— re-
lies on the behavior of each objective function given some
fixed number of training samples n; and somefixed param-
eterization of the classifier 6.

In simplistic terms, there are four possible circumstances
onewill encounter:

e Ny — oo, B sufficient: For the case in which one has
plenty of independent training samples, one'straining
data will yield accurate estimates of the a posterioris
and PDF of x over its entire domain. Furthermore,
on€e's classifier will have sufficient functiona capac-
ity to model these estimates, and one will achieve
Bayesian discriminant performance.

n, — oo; B insufficient: For thiscase, the estimates of
thea posteriorisand PDF of x will beaccurate, but the
classifier will have insufficient functiona capacity to
model them. Asaresult, the classifier will not achieve
Bayesian performance.
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e Ny K oo; 6 sufficient: In practice one rarely has ac-
cess to a sufficient amount of training data. In such
cases the data will constitute poor estimates of the a
posteriorisand PDF of x. If theclassifier has sufficient
parameterization it will learn these inaccurate proba-
bilisticestimatesand will generaize poorly on digoint
test data ([6], section 3.8).

N < oo; B insufficient: For the case in which one has
insufficient data, it isoften advantageoustotrainaclas-
sifier with reduced parameterization. In such casesthe
datawill constitute poor estimates of the a posterioris
and PDF of x, but the classifier will not have sufficient
functional capacity to learn thelessrepresentativefea
tures of these inaccurate probabilistic estimates. In-
stead it will have only enough capacity to learn the
gross features of these poor estimates, and generaliza-
tion to digoint test data will be as good as warranted
by thetraining data.

This case has been studied in great detail from anum-
ber of different perspectives. PAC* analysis of learn-
ing using VC dimension appliesaworst case analysis
to the problem of learning from examples by deriving
bounds on the number of exemplars needed to attain
(with a desired probability) a desired accuracy. The
VC dimension is defined only for concept classes that
are discrete, or in connectionist parlance, for binary
outputs (but potentially continuous inputs). Discrete
concept classes require that the class-conditional den-
sities of the input RV p(x |wj) be non-overlapping.
For this reason the PAC formalism does not apply to
our situation, in which estimates of a posteriori proba
bilities, or of the "best guess classification” (wherethe
best guess might not be very accurate) are required.

VC PAC anadysishas been applied to feedforward net-
worksof binary threshol d elements, to which wedirect
interested readers’ attention [2].

The study of classifier generaizationistypicaly viewed as
a problem of determining the optimal parameterization for
a classifier, given some fixed number of training samples.
Interest inthefunctional form of the objectivefunction used
to train the classifier has rarely gone beyond establishing
its validity as alearning metric on some information theo-
retic basis. But (52) — (54) clearly illustrate that different
objective functions approximate the Bayesian di scriminant
function in markedly different ways. In this sense, given
fixed n; and 6, each objective function represents a dif-
ferent estimator of the Bayesian discriminant function. In
detection and estimation theory, estimators are evaluated
in terms of their bias and variance for finite sample sizes.
Good estimators are those that are unbiased with minimal
variance (as determined by the Cramér-Rao bound [5]);
such estimators are characterized as “efficient”. We feel
that the study of generalization in MLP classifiers can be

“Probably Approximately Correct.



advanced by placing more emphasis on theoretical compar-
isons of objective functions as estimators of the Bayesian
discriminant function. The derivations of this paper serve
as apoint of departure for such comparisons.

6 SUMMARY

Multi-Layer Perceptrons can be trained with two broad
classes of objective functions to yield Bayesian discrim-
inant performance. Reasonable error measures yield MLP
outputs that (under conditions summarized below) asymp-
totically converge to the a posteriori probabilities associ-
ated withtheinput RV. Mean-squared error and information
theoretic objective functions prove to be reasonable error
measures. Classification Figures of Merit (CFMmono ) yield
MLP outputsthat generaly reflect the identity of the max-
imum a posteriori associated with any sample of the input
RV for asymptotically large training sets.

The conditions necessary for MLP Bayesian discriminant
performance (given that the classifier istrained with area
sonableerror measure or a CFM oo Objective function) are

e The class-conditional densities of the input RV must
be “well-behaved” to the extent that their complexity
must be bounded (section 3.1.1).

e The functional capacity of the MLP classifier, ex-
pressed inits parameterization 8 , must be sufficient to
model the class-conditional densities of the input RV
(section 3.1.2).

e The MLP training set must contain an asymptoticaly
large number of statistically independent trai ning sam-
ples.

Given these results, we are inclined to view architecturally
identical MLPs trained with different Bayesian objective
functions as dternative estimators of the Bayesian dis-
criminant function. We offer these results as a basis for
evaluating MLP classifier generdization in the context of
traditional detection and estimation theory.
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Figure 2: The Lg minimum error value of Oi(xp, €) is
plotted as afunction of P(w; | xp) for R=1.125, 2.0, 9.0.
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asafunction of P(wj | Xp) for varioustraining target values.
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Figure4: Three different functiona implementations of the CFMono l€arning rule: Heaviside step, linear, and “maximally
flat”. Inset: @ CFM ono function in thevicinity of A = 0.
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