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Abstract

We find the VC dimension of a leaky integrate-and-

fire neuron model. The VC dimension quantifies

the ability of a function class to partition an input

pattern space, and can be considered a measure of

computational capacity. In this case, the function

class is the class of integrate-and-fire models gen-

erated by varying the integration time constant �

and the threshold �, the input space they partition

is the space of continuous-time signals, and the bi-

nary partition is specified by whether or not the

model reaches threshold and spikes at some spec-

ified time. We show that the VC dimension di-

verges only logarithmically with the input signal

bandwidthN , where the signal bandwidth is deter-

mined by the noise inherent in the process of spike

generation. For reasonable estimates of the signal

bandwidth, the VC dimension turns out to be quite

small (¡10). We also extend this approach to ar-

bitrary passive dendritic trees. The main contri-

butions of this work are (1) it offers a novel treat-

ment of the computational capacity of this class of

dynamic system; and (2) it provides a framework

for analyzing the computational capabilities of the

dynamical systems defined by networks of spiking

neurons.

1 Introduction

A central concern in computational neuroscience is under-

standing the functional significance of single neuron com-

�To whom correspondence should be directed.

plexity. On the one hand, the success of artificial neural net-

work models, which begin with the notion that brain-like

computation can be well described by large interconnected

networks of very simple elements, argues that the compu-

tational capabilities of the individual elements can be ne-

glected. On the other hand, a vast body of research (see

e.g. McKenna et al. (1992)) supports the notion that single

neurons are complex dynamical systems, able to perform a

wide range of interesting computations. Brown et al. (1992)

have argued for a synthesis of these positions: if individual

neurons have computational significance, then perhaps each

should be considered a micronet in its own right.

In order to assess the computational signficance of single neu-

rons, it would be useful to have a quantitative measure of com-

putational capacity. The Vapnik-Chervonenkis dimension

(1971) can be considered such a measure for static neural net-

works (or, more generally, for any boolean function class.) It

is a measure of the richness of the mappings possible within

a class of functions, and typically increases as the size of the

network (i.e. number of free parameters) increases. Such mea-

sures have not been applied to models of real neurons, in part

because real neurons are dynamical systems.

There is as yet no satisfactory general theory of computation

in dynamical systems. As a step in that direction, we have

extended the notion of the VC dimension to dynamical sys-

tems. We consider the class of noiseless leaky integrate-and-

fire threshold models with time constant � and threshold �

driven by continuous-time inputs; we then extend our anal-

ysis to noisy inputs. These models have been developed as

simplified descriptions of the more complex dynamics of real

neurons. We define the VC dimension in terms of the ability

of this class to assign an arbitrary boolean “label” to each in-

put signal; the largest number of signals to which every pos-

sible labeling can be assigned is its VC dimension. We show

that the VC dimension diverges logarithmically with the in-

put signal bandwidth N .

2 Review of VC dimension

The VC dimension (Vapnik and Chervonenkis 1971) is a mea-

sure of the richness of a class of boolean functions. It gives



an upper bound on the number of exemplars required to guar-

antee that a set of parameters fit to data will provide a good

fit for new data (Blumer et al. 1989). It has been applied in

the neural network literature to give a measure of the number

of patterns needed to train a network of a given size. Here we

present a brief overview of the VC dimension in the context

of neural networks (see Abu-Mostafa (1989) for an introduc-

tion.)

Let the concept class F � <

N

! f0; 1g, and f

w

2 F be

some member of that class. For example,F could be the class

of all 3-layer feedforward linear threshold networks with N

inputs, 12 hidden units, and one output, parameterized by

c = 12N + 25 weights, and f

w

would be some particular

choice of the c-dimensional weight vector w. For every set

I = (I

(1)

; : : : ; I

(M)

) of inputs, any choice of w = w

0 spec-

ifies an M -digit binary string Y

w
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w

0
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0
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);

: : : ; f

w

0

(I

(M)

)) in which the m

th digit corresponds to the

output of f
w

on the mth input I(m); varying w will in gen-

eral produce a different binary string. Y
w

0 , which is actually

a function of the inputs, Y
w

0

(I

(1)

; : : : ; I

(M)

), can be thought

of as the truth table for a particular choice of w = w

0 on the

inputs. Now in principle Y
w

can take on 2M possible values;

but for large M there may not be choices of w that instanti-

ate every possible binary number. When there exist 2M val-

ues of w such that Y
w

takes on all the 2

M possible values,

the function class F is said to shatter the set of inputs I. This

leads to the VC dimension d

V C

of F : the VC dimension is

the largest number M for which there exists a set of inputs

(I

(1)

; : : : ; I

(M)

) which is shattered by F .

In the context of learning theory the VC dimension is useful

because of a relation between the number of labeled exem-

plars in a training set and the probability of generating the

correct output on a new exemplar (Vapnik and Chervonen-

kis 1971). If the number of exemplars is greater than the VC

dimension, then the probability of producing an incorrect re-

sponse decreases exponentially with the number of exemplars.

Much work has gone into computing the VC dimension of

certain classes of neural networks (Baum and Haussler 1989;

Anthony 1994; Maass 1995).

3 An Integrate-and-fire Classifier

The nonlinear dynamics of real neurons have been studied

in great detail for more than forty-five years (Hodgkin and

Huxley 1952; Sakmann and Neher 1983); perhaps the only

fair summary of this work—the importance of which has

been recognized with several Nobel Prizes—is simply to ac-

knowledge the complexity it has uncovered. Different neu-

ronal classes can show very different behaviors, both in in-

trinsic activity (i.e. the activity when the input from other

neurons is suppressed) and in the response to extrinsic in-

put. Nevertheless, a very simple model—the leaky integrate-

and-fire model—is often used as a starting point for com-

putational analyses of neuronal function. Such a model in-

deed provides a surprisingly good qualitative, and sometimes

even quantitative, description of some neuronal dynamics.

To quote Bryant and Segundo (1976), “A simple model of

the spike-triggering system, consisting of a linear filter (first-

order Wiener kernel) folowed by a threshold device with

“dead-time,” was quite accurate in predicting experimentally

observed spike timings.” Similar results seem to hold in cor-

tical neurons (Koch et al. 1995).

The success of simple leaky integrate-and-fire models is not

surprising in light of all that is known about neuronal bio-

physics. Neurons can be thought of as nonlinear distributed

electrical circuits. The fatty membrane surrounding the cy-

toplasm is a very good insulator, and can be modeled as a

capacitor with small leak conductance—a simple resistive-

capacitative (RC) circuit. Ionic pumps in the membrane use

metabolic energy to establish an electrical potential across the

membrane, and the potential is maintained by the selective

permeability of the membrane to certain ions.

Ionic current can flow through small proteins (gated chan-

nels) embedded in the membrane (Sakmann and Neher 1983;

Hille 1992). Each channel is either open or closed, with a

probability that depends on the voltage. The voltage depen-

dence of this probability is steep, so that at a critical voltage

called the threshold, the probability suddenly jumps to one,

which induces a dramatic reversal in the membrane poten-

tial called an action potential or, more colloquially, a spike.

The spike is a brief and highly stereotyped event, and it is this

spike that propagates down the axon and is the input to other

neurons. It is generally believed that only the timing of the

spike conveys information, so that a complete specification

of the output is given by a list of spike times. Thus below the

threshold the neuronal response is governed by the RC prop-

erties of the membrane itself, while above it the neuron emits

a spike and resets, and the process begins again.

The particular leaky integrate-and-fire classifier we consider

has two free parameters: a single time constant � and a

threshold �, as shown in figure 1. The inputs are continuous

time signals, and the output is a binary variable determined

by whether the voltage exceeds the threshold at any time t.

The voltage V (t) of the unit at time t is given by the convolu-

tion of the input I(t) with a single exponential kernelw(t) =

e

�t=� ,

V (t) =

Z

t

0

I(t� �) e

��=�

d�: (1)

The convolution kernel has only a single exponential; this cor-

responds to the output of a single RC integrator.

We now define ~

V as the voltage at the end of the interval

[0; t

f

],
~

V = V (t

f

):

The outputY of the unit over this interval is a binary variable,

obtained by applying a threshold � to ~

V ,

Y = sgn( ~V � �): (2)
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τ=1

Kernel 1 Kernel 2

τ=1/2
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θ *

V(t)
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Figure 1: The model. An input signal I(t) is convolved with a kernel and passed through a threshold to produce a binary out-

put. The output of three distinct kernels, differing only by the time constant � , to the same input is shown. The input has been

constructed so that for low (� = 1=3) and high (� = 1) values, V (t) remains below the threshold �. For an intermediate value

(� = 1=2) V (t) exceeds � at the * and emits a spike. Note that the fluctations around the threshold are very small, indicating a

high sensitivity of the system to noise.

Notice that the voltage V (t), t < t

f

does not involve thresh-

olding; the threshold is imposed only at t = t

f

, so the present

model is an integrate-and-fire model without reset. Only

whenV (t) remains subthreshold over the interval does it give

the the same output as standard integrate-and-fire models,

which reset after each threshold-crossing. If we would like

our results to carry over to resetting models, we must be care-

ful to consider inputs that do not cause V (t) to exceed thresh-

old prematurely.

4 Convolution as a product

We now move to discrete time and consider the state of the

system at evenly spaced intervals, t
0

; : : : ; t

N�1

,

~

V =

N�1

X

i=0

I

i

w

i

; (3)

where I
i

= I(t

N�1

�t

i

) andN is the signal bandwidth, with

w

i

= e

�t

i

=�

: (4)

This is simply the discrete convolution of the input I
i

with

a kernel w
i

. Note that this equation can be interpreted as a

one-output perceptron with an N -dimensional input vector I

and a weight vector w. We observe that due to the physical

constraints of positive time constants � > 0, and t
i

� 0, we

find a constraint on w
i

,

0 � w

i

� 1: (5)

In equation 3, we used the conventional represention of the

discrete convolution as a sum. In assessing the VC dimen-

sion it will be convenient to work with an equivalent repre-

sentation as a product. We observe that the convolution of

equation 3 is polynomial in w
1

, since

w

i

= e

�i�t=�

= (w

1

)

i

; (6)

where �t = t

i+1

� t

i

. We can therefore write

~

V =

N

X

i=0

I

i

(w

1

)

i

= I

N

N�1

Y

i=0

(w

1

� r

i

) (7)

where r
i

are the N = t

f

=�t+ 1 roots of the polynomial.

Equation 7 expresses the output ~

V of the integrate-and-fire

unit as a polynomial of degree N in the weight kernel w
i

,

specified by the parameter w
1

. The output is a function of



� , since the weight kernel is related to � by equation 6. The

coefficients w
i

of the sum, and therefore the locations r
i

of

the roots, are determined by the inputs. Different integrate-

and-fire units may assign different outputs to a given input

as the parameter w
1

is varied. The advantage of the product

representation is that it allows us to see explicitly the critical

values of w
1

at which the output in response to a given in-

put changes. Specifically, the critical values are the roots r
i

of the polynomial. Since the roots are determined by the in-

put signal itself, the critical values of w
1

depend on the input

itself, and will in general be different for different inputs.

4.1 Constructing a shatterable set of inputs

The key construction of this section (illustrated in figure 2)

is a procedure for “inverting” the integrate-and-fire neuron,

by constructing an input signal I(t) given a list of w
1

values

and corresponding responses (spike vs. no spike.)1 For now

we consider only the zero-threshold case.

Before proceeding, let us specify the elements of the construc-

tion. We will form a set of input vectors I(1); : : : ; I(M). Each

N -dimensional input vector is obtained by sampling a contin-

uous waveform I(t) at N uniformly spaced points. For any

given value of w
1

, equations 2 and 3 determine the binary

value of the outputY (m) in response to input I(m). Thus each

value ofw
1

specifies anM -digit binary number, in which the

m

th digit is the output Y (m) in response to input I(m). We

call Y (m) the label associated to the input I(m) by a given

value of w
1

, and Y is the M -digit label associated by a given

value of w
1

to the set of M inputs. There are 2

M possible

such labels associated with any set of M inputs. Recall that

if a set of 2M values of w
1

can be specified, such that this set

associates all possible labels Y to the input set, then this set

is said to shatter the inputs. The VC dimension is the largest

value of M for which a shattering set of w
1

s can be found.

Our task is therefore to construct set of M inputs and specify

a corresponding set of 2M values of w
1

such that the input

set is shattered. We begin by considering how the labeling of

a given input varies with w

1

. That is, what is the mth digit,

considered as a function ofw
1

, of the label Y associated with

the input I(m)? Using the product representation of the con-

volution from the previous section, we observe that the label

changes whenever w
1

passes through a root. Within the in-

terval between two roots, r
i

< w

1

< r

i+1

, the label remains

1If a finer temporal discretization is desired, adding extraneous
roots gives the input waveform more sample points without intro-
ducing extra sign changes. If explicitly continuous-time inputs are
to be constructed, one can consider the Laplace transform of the in-
put, and note that the desired outputs correspond to simple sign con-
straints in the Laplace domain. A function in the Laplace domain
that meets the constraints can be concocted, and an inverse Laplace
transform gives the corresponding time-domain input. There is a
great deal of freedom in this concocting, but one natural class of in-
puts resulting from the inverse Laplace transform is a series of mod-
ulated delta pulses. It is interesting to note that the inputs neurons
typically receive consist of a series of action potentials.

unchanged. We can therefore conveniently manipulate the la-

beling associated with a given input by judicious placement

of the roots. In fact, once the roots are specified, the input is

obtained simply by multiplying out the product in equation 7

to obtain the coefficients I
i

.

Now we turn to the M -digit label Y associated with a speci-

fied value of w
1

. For this we hold w
1

fixed, and consider the

label associated with each input I(1); : : : ; I(M) in turn; these

are the digits of Y . But since we have already shown how to

obtain the desired label for any particular input—by placing

the roots appropriately—obtaining the desired label Y for a

given w
1

merely requires choosing the roots associated with

each input in turn. Thus we have a procedure for constructing

an input set that associates a specified label Y with the input

set for a particular value of w
1

.

4.2 VC dimension depends on signal bandwidth

So far we have shown how to construct an input set labeled

by a specified Y for a given value of w
1

. The final step re-

quires constructing an input set that is shatterable—a set for

which Y assumes all 2M possible values, at 2M values ofw
1

,

0 < w

1

< 1. That is, we must partition the w
1

-axis into 2

M

regions. The boundaries between the regions are determined

by the roots: the presence of a root at some w
1

for the mth

input means that the mth digit of Y changes at that value of

w

1

. The number of digit changes is NM , because there are

N roots/input and M inputs.

Since Y is anM -digit binary string that we require to assume

all 2M possible values, we can regard this as counting in bi-

nary. Now counting from 0 to 2

M

� 1 in standard binary in-

volves 2M logM digit changes. For example, the transition

from 0111

2

= 7 to 1000

2

= 8 involves 4 digit changes. In

order to make best use of theNM roots, we therefore adopt a

different counting scheme, a Gray’s code,2 so that only NM

digit changes are required. Figure 3 shows how to construct

a shatterable set of M = 2 inputs using this scheme. Here

the requisite bandwidth is N = 2. The roots of the first input

I

(0) are placed at r(0) = (1=8; 3=8; 6=8). Expanding as in

equation 7 gives the actual sampled values of I(0).

The number of roots of each polynomial is determined by the

temporal discretization N . For a set of M bandlimited sig-

nals, there are at most NM distinct roots, which can be used

to divide the w-axis into NM + 1 regions

number of labels = NM + 1:

Thus the VC dimension is determined by the sampling rate.

To achieve d
V C

= M , we choose a sufficiently largeN given

2A Gray’s code is an ordering of the binary numbers 0; : : : ;

2

M

� 1 such that adjacent numbers differ in only one digit. For our
purposes, we choose a Gray’s code in which all digits changes state
the same number of times, namely 2

M

=M times.
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τw  = exp −1/
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Figure 2: Diagrammatic representation of the construction of an input which results in output spikes at particular desired neuronal

time constants �
i

. Given a set of time constants �
i

and associated binary desired outputs, a single temporal input is constructed

which has the property that, when the neuron’s time constant is set to �

i

, the associated desired output is produced. The con-

struction proceeds in stages: the time constants are passed through a function, the transitions in the desired outputs are marked

and arbitrary points in the corresponding intervals are chosen, a polynomial with these points as roots is constructed, and the

coefficients of this polynomial form the desired temporal input. To construct a set of 2M shatterable inputs, this construction is

used 2

M times.

by

N =

�

2

M

� 1

M

�

; (8)

where d�e indicates rounding up to the largest integer. This

shows that with a sufficiently high sampling rate an arbitrar-

ily high VC dimension can be achieved. Since N is deter-

mined by the sampling rate of a continuous signal, the VC

dimension of a signal of infinite bandwidth is unbounded. It

is important to note, however, that the dependence of the VC

dimension on the signal bandwith is only logarithmic, and

therefore the divergence is weak.

4.3 Threshold: Preventing Premature Discharge

The model we have been considering (equations 1 and 2) has

no reset; ~V does not depend on whether V (t) exceeds thresh-

old at any time within the interval 0 � t � t

f

. This of

course is not the expected behavior from an integrate-and-fire

model. Typically, integrate-and-fire models reset V (t) ! 0

after discharging (sometimes imposing a refractory period as

well.)

The inputs we have constructed will not typically be shattered

by an integrate-and-fire model with reset. However, by using

a non-zero threshold, we can construct a new set of inputs that

is shattered. First we set the threshold to exceed the maxi-

mum over the interval, � > max

t<t

f

V (t). We now add the

threshold to the final term of each input signal (corresponding

to the constant term of the associated polynomial) to create a

new set of inputs I 0. These new inputs differ only at I
0

,

I

0

0

= I

0

+ �:

(Note that because of the definition of I in equation 3, I
0

cor-

responds to I(t
f

), i.e. it is the last point of the sampled wave-

form.) Since w
0

= 1, this shift guarantees that digit changes,

which previously occured when ~

V crossed zero for different

values of w
1

, now occur when ~

V crosses �.

5 Special cases and extensions

5.1 VC dimension for purely positive inputs

The VC dimension of a system with purely positive inputs is

1. This is of interest when considering inputs generated by

purely excitatory synaptic inputs. To show this, we note first

that by construction, the shattering inputs oscillate around 0.

That is, for each input, subsequent points I
i

and I
i+1

have op-

posite sign. This follows from equation 7: thenth order coef-

ficient is generated by the sum of the products of N �n neg-

ative terms (since r
i

> 0), which is positive if N �n is even

and negative otherwise. Conversely, if I is purely positive,

then the roots are all negative and imaginary. They are there-

fore physically unrealizable under our assumptions (equation

5.) Thus the VC dimension is 1. Adding a threshold creates

only at most one new root.
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Figure 3: A set of shattered inputs. M = 2 input signals are constructed such that there exist neuronal time constants �
1

; �

2

; �

3

; �

4

that induce all 2M = 4 possible labelings.

5.2 Passive dendritic trees

In the integrate-and-fire model we have been considering, the

integrating kernel consists of a single exponential time con-

stant, corresponding to a single RC circuit. One generaliza-

tion of this model is to passive dendritic trees. Using the clas-

sic result that the convolution kernel (i.e. the Green’s func-

tion) can be approximated as the sum of z exponentials,

W (t) = c

1

e

�t=�

1

+ � � �+ c

z

e

�t=�

z

:

Then the voltage can be represented by

V (t) =

Z

t

0

I(t� �)W (�) d�:

Discretizing as before, we have

~

V =

N�1

X

i=0

I

i

W

i

;

where

W

i

= c

1

(w

1

)

i

+ � � �+ c

z

(w

z

)

i

:

The effect of the dendritic tree is therefore to increase the

number of roots for a given bandwidth from NM to NzM ,

since now for each of the M inputs there are now zN rather

thanN roots. The requisite bandwidthN to shatterM inputs

is now

N =

�

2

M

� 1

zM

�

; (9)

where as before d�e indicates rounding up to the largest inte-

ger. This is less by a factor of z than in the case of a single

exponential.

5.3 The effect of input noise

Finding that a concept class has unbounded VC dimension

should be taken as a sign that issues of prior knowledge, noise,

precision, and physical realizability, are the only guarantees

of good generalization. For instance, convex polygons in the

plane have unbounded VC dimension. This is in contrast to a

finite VC dimension, which means that even with unlimited

precision and zero noise, there is PAC generalization bound,

a guarantee on the accuracy of a hypothesis in the PAC model.

Here we consider the effect of noise added to the inputs.

In general, noise in a system with signal power constraints

determines a maximum resolvable frequency, which in the

present context determinesN , the signal bandwidth. The VC

dimension depends only logarithmically on N , so although

equation 8 is formally a divergence of the VC dimension,

actually this divergence is only logarithmic, and therefore

weak. In practice, for any physically realizable system, the

VC dimension given by equation 8 will be quite small.

Another way to think about this is to suppose that

I

0

= I+ n (10)



where n is gaussian white noise. From equation 7, we have

~

V

0

=

N�1

X

i=0

I

0

i

(w

1

)

i (11)

=

N�1

X

i=0

n

i

(w

1

)

i

+

N�1

X

i=0

I

i

(w

1

)

i (12)

= z +

~

V (13)

wheren
i

and I
i

are the ith components of the input and noise,

respectively. The first term, namely the random variable z, is

the weighted sum of N iid gaussian variables, so it is also a

gaussian, with variance �2
z

; the second term is just ~V in the

noise-free case.

So how does this effect the VC dimension? Noise in this sense

does not fall into the classical VC framework (although Bart-

lett, Long, and Williamson (1994) extend the framework to-

wards situations of this sort.) Nevertheless, the effect is clear:

there is some probability P

m

of misclassifying each input.

This probability depends on ~

V and on z: it is the probabil-

ity that sgn( ~V + z) 6= sgn( ~V ). If both z and ~

V are 0-mean,

then this is just Prob(j ~V j � jzj < 0)=2 (we divide by 2 be-

cause half the time z has the same sign as ~

V and so doesn’t

change its sign.)

What is the misclassification error associated with z? This

depends on the ratio ~

V =z, which looks like a kind of signal

to noise ratio. However, the natural measure of the signal

strength is
P

I

2

i

, and it is this quantity that should participate

in the signal to noise ratio. Because of the manner in which

they are constructed, for typical signals I
i

is largest around

N=2. If the roots are uniformly distributed between 0 and 1,

we can actually estimate the typical signal strength as a func-

tion of N just by multiplying out the polynomial.

Numerical simulations suggest that very large signal to noise

ratios are required to keep the error reasonable for even mod-

erate values of N , even larger than those called for by the

bandwidth requirements, which after all constitutes only an

upper bound.

6 Discussion

This is to our knowledge the first application of the VC di-

mension to a dynamical system. We consider the thresholded

output of an integrate-and-fire model to impose a binary par-

tition on a set of continuous-time input signals. We have

shown that the VC dimension of this model diverges logarith-

mically with the input signal bandwidth N .

Because our analysis is stronger than the usual VC dimension

calculation, the consequences for generalization are slightly

more robust to prior knowlege than the generic PAC bound.3

3In order to show that the VC dimension of a concept class is
at least M , one must show that there exists some set of 2M con-

6.1 Implications for single neuron computation

There is an extensive literature demonstrating the computa-

tional potential of single neurons and networks. Koch et al.

(1982) showed how an AND-NOT of two inputs could be

performed in the passive dendritic tree of a retinal ganglion

cell, and suggested that this might play a role in the com-

putation of directional selectivity. Shepherd and Brayton

(1987) implemented a complete set of logic operations at sin-

gle spines using Hodgkin-Huxley channels and inhibitory in-

puts for NOT. Zador et al. (1992) showed how calcium- and

voltage-dependent channels could implement a kind of tem-

poral XOR in the dendritic tree, without additional inhibitory

inputs. Maass (1996) has shown that networks of simple

spiking neurons possess rich computational properties, in the

sense of complexity theory.

None of these demonstrations attempted a quantification of

the overall computational capacity of a single neuron. To

our knowledge, the only attempt to quantify the ability of

a single neuron to partition an input space is Mel (1992).

He implemented a model of a cortical neuron with nonlin-

ear NMDA conductances in the dendritic tree, and with a

biologically-motivated Hebb rule trained it to partition 100

high-dimensional patterns into two classes. The error rate on

this set using various measures was about 10%. Note that the

model class we consider—purely passive dendritic trees with

integrate-and-fire nonlinearities—is more restricted than the

NMDA-based nonlinearities considered by Mel (1992).

We have described a more formal approach to the analysis of

single neuron computation. This approach takes into account

the temporal structure of inputs. It puts a bound on the ability

of a simple model to partition an input space. Because of the

exponential dependence of the signal bandwidth required to

achieve a given VC dimension (equation 8), under reasonable

physical assumptions the VC dimension must be quite small.

The exquisite sensitivity to noise in the inputs further limits

the number of inputs that could be shattered by any physically

realizable system. This number can be considered to be less

than 10.

The model we consider is of course a caricature of a real

neuron—the dynamics of real neurons are much more com-

plex (see e.g. McKenna et al. (1992).) The leaky integrate-

and-fire model with reset is nevertheless a standard starting

point for considering dynamical aspects of neuron behavior.

A recent careful examination of its validity (Koch et al. 1995)

cepts which shatters some set of M inputs. Here we have shown
something more general, since our construction proceeds for any set
of 2M concepts from our concept class. Given any set of 2M con-
cepts, we can find a set of M inputs that these concepts shatter. This
has consequences in the application to PAC learning (Valiant 1984),
where it corresponds to generalizing one of the two worst-case as-
sumptions of the PAC criterion. So the PAC lower bound on gen-
eralization here requires the usual worst-case assumption over dis-
tributions of inputs, but remains true for any reasonable distribution
over concepts.



supports the notion that for rapidly varying input signals of

the kind considered here it offers a good first approximation.

6.2 The VC dimension and dynamical systems

A useful rule of thumb is that the VC dimension often turns

out to be roughly proportional to the number of free parame-

ters. This is true, for example, in feedforward linear thresh-

old networks, where the VC dimension is equal to the number

of free weights, up to a logarithmic factor (Baum and Haus-

sler 1989). In our case, we expected the VC dimension to be

about two, since there were two free parameters (� and � .)

Furthermore, a small VC dimension for the integrate-and-fire

model conforms to our intuitive notion of the simplicity of

this model. In fact, equation 3 shows that the integrate-and-

fire model can be considered as a kind of perceptron, and thus

can only impose linear partitions on the input space.

We were therefore surprised to find that for noiseless inputs,

the VC dimension was unbounded. However, the apparent

power of the integrate-and-fire unit arises not from a nonlin-

ear partitioning, but rather from a linear partitioning in a space

of unbounded dimension.4 A similar dilemma arises when

the discrete formulation of Shannon entropy is applied to con-

tinous variables: the information content of a noiseless ran-

dom variable is infinite (since, for example, any message can

be encoded in its decimal expansion.) Any finite noise, of

course, renders finite the discrete entropy of the continuous

variable.

Just as the discrete entropy of a continuous variable becomes

finite in the presense of noise, so the unbounded VC dimen-

sion collapses when any notion of noise is included. We con-

sidered two ways noise could limit the VC dimension. First,

the bandwidth of the signal is implicitly due to noise, and the

VC dimension diverges logarithmically with the input signal

bandwidth. Second, we considered the effect of noise added

explicitly to the signal, and found that the probability of mis-

classification was a very steep function of the VC dimension.

In both cases, the apparent VC dimension in the presense of

noise conformed much more closely with our intuitive notion

that it should be rather small.

It will be interesting to see whether related notions of compu-

tational capacity, such as those derived from work on average

generalization (Haussler, Kearns, Seung, and Tishby 1994),

can be extended to dynamical systems in a similar way.
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