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Abstract

The match between the physics of MEG and the assumptionseoftist well developed
blind source separation (BSS) algorithms (unknown inst@@dus linear mixing process, many
sensors compared to expected recoverable sources, laegknaig) have tempted researchers
to apply these algorithms to MEG data. We review some of tledfgets, with particular
emphasis on our own work.

I ntroduction (or equivalently for our purposes Independent Component

Analysis, ICA), is that of segregating unobservable or la-
Magnetoencephalographic (MEG) functional brain imagent source signals using only the information from the
ing is passive, and under ideal conditions can monitor thbserved mixed signals. The BSS algorithms of interest
activation of a brain region with mm spatial resolution &tere assume that the mixing process is linear, instanta-
a very high temporal resolution &falainen et al., 1993; neous, and unchanging. Such methods have been success-
George et al., 1995). The advantage of MEG over EEG@ly applied to EEG (Jung et al., 1999, 2000) and FMRI
comes mainly from the fact that the head is practical{icKeown et al., 1998a,b). Due to its success in these do-
transparent to magnetic fields, but alters current flow suhains, a number of groups began applying BSS to MEG.
stantially (Hari, 1999; Hari et al., 1997).

Typical signals associated with neuronal activity are Vigario et al. (1998, 2000) presented tantalizing results
on the order of one hundred fT, while the noise signgly applying BSS to MEG data. The main issue in their
within a shielded room tend to be much larger (Lewirgqudy was that the experiment design was perhaps too
and Orrison, 1995). Furthermore, the intrinsic sensghod: BSS worked well, but so did conventional meth-
noise is comparable in magnitude to small neu_ronal Si8tis, resulting in no “headroom” for improvement by BSS.
nals. Therefore, what the sensors record during an §Fey thus could not show that the BSS algorithm in use,
perimenF is a.lways a mixture of small neuromagnetic ag&a (Hyvarinen and Oja, 1997), delivered results supe-
large noise signals. rior to those of conventional processing. In a similar set

The general goal of localizing and recovering the timg experiments, Ziehe et al. (2000);ibbeler et al. (2000)

course of these neuronal sources thus requires separafisiflied the same BSS algorithm as we use below to MEG.
the signals from noise. The traditional approach consists

of: (1) designing experiments that activate only a few

regions, (2) averaging over trials, and (3) analysis m An additional technique that can be applied in an at-

: " ¢ th tical model of i 'mpt to check whether BSS-based MEG signal process-
INg Strong use ot-:a mathematical Model of propagatiph, ., significantly surpass conventional techniques is to

Fhrough the hgad. .Havmg th!s model, ‘i‘gfad'e”t methB rform head-to-head comparisons on difficult datasets,
is applied to find fixed locations and time courses Of{ﬁeaning datasets with which conventional techniques

B e e e s e dfculy. I order o make sucn & comparson
j P q necessary to evaluate the result of the proposed new

, : " : o
model is both ill conditioned and inexact, so the inversg ., o i o aluation is conducted by checking con-

estimate can have an unacceptable error. Furthermore tne . , . .
. ; 'sistency with known properties of noise, of physiology,
validity of the results are hard to verify because they a y brop phy gy

. : : d of anatomy. This is a stringent test, as it is unlikely
forced by th's procedL_Jre tp b € consistent with the und?ﬁ'at incorrectly separated data would pass it.
stood physics of the situationg. the forward model.

An alternative solution is to use blind source separa- ) ) . ) .
tion (BSS) techniques, as shown schematically in Fig-,We describe the blind separation problem; review ap-

ure 1. The problem addressed by blind source separaffyfations of BSS to MEG data with particular emphasis
on work in which the authors have been involved; and fin-
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Figure 1: The BSS-for-MEG pipeline. Signals from the braiu ather noise sourcest) are mixed through an
unknown linear mixing procesA, resulting in the sensor reading$t) = As(¢). BSS finds an unmixing matrix
W that maps from the sensor signals to recovered compog@nts- W x(t). The entries of the attenuation matrix
A = W~ describe how strongly each sensor responds to each contponen

Separation their results should therefore be invariant to shuffling of
the data. As a consequence of this, they cannot take ad-
Blind separation can be stated as follows. két) be an vantage of the temporal structure of each source as a cue
n-dimensional vector of sensor signals, which we assum@g correct separation. Summary algorithms first make a
to be an instantaneous linear mixtureroinknown in- pass through the data while summary statistics are accu-
dependent underlying sourcegt), via the unknown sta- mulated by averaging; they then operate solely upon the
tionaryn x n mixing matrix A, summary statistics to find the unmixing matN¥. Sum-
mary algorithms should in general be relatively insensi-
tive to sensor noise, because their summary statistics are
averages over time. The relatively poor signal-to-noise
ratios in MEG data suggested the choice of a summary
algorithm. Furthermore noise of interest and neurogenic
signals have broad autocorrelation functions, suggesting

and scaling of its rows. After this is accomplished we “fle use of a non-instantaneous, or contextual (Pearimutter

. . N _ —1 . 'S
f'rr;listr:g Amizt;')éj:cgm ‘Zsi tioar:ngl %i;ﬁ:ﬁ igs'chcetjlsuarpnr?genand Parra, 1996), algorithm. For these reasons we chose a
b 9 ﬁgp—instantaneous summary algorithm.

as PCA, in that the data matrix is expressed as a sum 0 _ i i
outer products An example of such an algorithm is SOBI (Belouchrani

et al., 1993; Cardoso, 1994), which can use the temporal
(z:())ie = Zé' (S‘-(t))tT @) structure of the sources as a cue, and gives high quality
it = J\2J
j

x(t) = A s(t) (1)

The BSS (or ICA) problem is to recove(t), given only
the measurements(t). This is accomplished by finding
a matrixW which approximatesA—!, up to permutation

separation while imposing rather modest computational
requirements. The particular statistics SOBI uses are the
ICA algorithms come in various classes. Instantaneotmrelations between pairs of sensors at a fixed delay,
algorithms, such as Bell-Sejnowski Infomax (1995) afd(7) = (x(t) x(t + 7)), which are simultaneously ap-
fICA (Hyvarinen and Oja, 1997), make repeated pasgesximately diagonalized. SOBI makes good use of abun-
through the dataset and update the unmixing matrix dant but noisy data, and can be tuned by modifying its set
response to the data at each time point. They are dédelays, allowing one to gently integrate a very weak
rived under the assumption that the signals are white, dodn of prior knowledge, namely knowledge of the length
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Figure 2: Separation of noise sources and neuronal comgonsimg blind source separation. LeMEG images
Each panel contains 90 trials. Trials are ordered venjicacept for (c), which is sorted by reaction time and where
the black curve indicates the times of button presses. $&ed color-coded source strength. Vertical black lines
indicate stimulus onset time. Pre- and post-stimulus thatare each 1000 ms. Righield maps Left sagittal,
right sagittal, dorsal, and posterior views. False colodicate the strength with which the component influences the
61 sensor pairs. This figure presents MEG images and field ofaf@ a 60 Hz component, (b) a slow DC drift
component, (¢) an eyeblink component, (d) and early oaipisual component, (e) a later occipital-parietal visual
component (f) a right somatosensory component and (g) adefatosensory component. From Tang et al. (2000a).

(b) Subject #1 component 20 (slow DC drift)

(c) Subject #1 component 6 (eyeblinks)

(d) Subject #1 component 27 (occipital)

(e) Subject #1 component 14 (occipital-parietal)

(f) Subject #1 component 7 (right somatosensory)

(g) Subject #1 component 34 (left somatosensory)
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Figure 3: Consistency of separation: overlaid time courgklacalized dipoles for separated visual components from
four similar visual reaction time tasks on a single subjdtte primary (fastest) source is shown on the top, and the
second-fastest on the bottom. From Tang et al. (2002).

constant of the autocorrelation function. Jun et al. (2002a,b) take a universal approximator ap-
As shown in Figures 2 and 3, by applying SOBI tproach to localization. The system is trained to directly
MEG data we achieved excellent separation of noiggp noisy sensor readings to dipole locations. This train-
(Tang et al., 2000a), resulting in signal-to-noise improvéng results in an MLP localizer which is is not limited (at
ment sufficient to perform single trial onset detectiomuntime) by the speed of the forward model. In our case,
(Tang et al., 2000b), and we showed that neuronal cothe training was done by passing random dipoles through
ponents can be separated from each other and localiadd@rward model and contaminating the resulting sensor
in a robust (across modalities, tasks, and subject) fashieadings with realistic noise. This gives accuracy vaguely
(Tang et al., 2002). These results are surveyed by Tangtched to that of a conventional algorithm. One can ap-
and Pearlmutter (2002). ply a few iterations of conventional Levenberg-Marquardt
(LM) minimization using the MLP’s output as the initial

L ocalization

algorithm time(ms) accuracy (mm)

Separation and localization can be performed jointly or

sequentially. Given BSS as a preprocessing step, we  4-start-LM 448.6 11.6
would expect a small number of focal regions in each MLP 0.5 11.9
neurogenic component. Conventional methods (Gorod- MLP-start-LM 34.6 2.8

nitsky and Rao, 1997; Mosher and Leahy, 1999) give good

performance under such conditions. However they &fable 1: Real-time performance using an inverse model

slow, assume certain noise properties, and generally vier universal approximator: a multilayer perceptron is

quire manual assistance. Furthermore they are limitediiained to invert the mapping of an analytical forward

speed by the speed of the forward model, which imposesdel. Shown are conventional Levenberg-Marquardt,

a surprisingly strong design constraint on MEG machinesur MLP, and our hybrid, under real brain noise. Times
In attempts to build real-time noise-robust localizersiere measured on a 800MHz AMD K7.



guess, resulting in a hybrid MLP-start-LM localizer. A€ardoso, J.-F. (1994). On the performance of orthogo-
shown in Table 1, this resulted in a speedup of 90Gth nal source separation algorithms. Horopean Signal
matched accuracies, or &4mproved linear accuracy at Processing Conferencpages 776—779, Edinburgh.

a speedup of 20. George, J. S., Aine, C. J., Mosher, J. C., Schmidt, D. M.,
These methods works equally well on the LANL SIS Ranken. D. M.. Schiitt. H. A.. Wood. C. C.. Lewine

Mark | MEG system, which has superconducting Magd-j p  sanders. J. A. and Belliveau. J. W (1995)
netic shields/mirrors that complicate the signal path to l\/.lapb,ing function in the human brain with mag-.

the point that a forward simulation requires many secondsnetoencephalography, anatomical magnetic-resonance-

(Kraus e_zt al., 1998, 2002). _Our_localizer, in its non-hybrid imaging, and functional magnetic-resonance-imaging.
form, still performs a localization to about the same ac- 3 clin. Neurophysio].12(5):406—431.

curacy in about the same amount of time. The work has ) )
also been extended to use a distributed output represgfrodnitsky, I. F. and Rao, B. D. (1997). Sparse sig-

tation resulting in increased robustness to interfering se Nal reconstruction from limited data using FOCUSS: A
ondary dipoles and potentially allowing rapid multidipole e-weighted minimum norm algorithntEEE Transac-
solutions to be constructed. In addition, the system hadions on Signal Processing5(3):600-616.

been extended to incorporate an extra head-position inpivalainen, M., Hari, R., Illmoniemi, R. J.,
allowing for a subject-independent localizer. Knuutila, J., and Lounasmaa, O. V. (1993).
Magnetoencephalography—theory, instrumentation,
and applications to noninvasive studies of the working
human brainRev. Modern Physic$5:413-497.

Blind separation of MEG data has been definitively shovtari, R. (1999). Magnetoencephalography as a tool
to remove various sources of noise. MEG machines aref clinical neurophysiology. In Niedermeyer, E. and
expensive because of heroic technological measures rd-opes Da Silva, F., editor&lectroencephalography:
quired to raise the SNR. For this reason, it is difficult Basic Principles, Clinical Applications, and Related
to justify not performing BSS-based preprocessing onFields Lippincott Williams & Wilkins, 4th edition.

MEG data to improve the SNR, even if separated neuroplyj R., Salmelin, R., Makela, J., Salenius, S., and Helle,

sources are to be recombined for conventional processingy, (1997). Magnetoencephalographic cortical rhythms.
As we have seen, SOBI preprocessing can do morgn; j psychophysiolR6(1-3):51-62.

than just remove noise: it can reliably segregate various , , )
sources of neuronal activity, allowing more sources to byvVarinen, A. and Oja, E. (1997). A fast fixed-point al-
recovered and localized. The SNR of individual sources is3°rithm for independent component analysiSeural
often sufficiently high to allow single-trial analysis, gpe ~ COMPUtation9(7).

ing the door to a broader range of experiments and,Jan, S. C., Pearlmutter, B. A., and Nolte, G. (2002a).
concert with robust real-time localization methods, po- Fast accurate MEG source localization using a multi-
tentially allowing the construction of MEG-based brain- layer perceptron trained with real brain noigghysics

Conclusion

computer interfaces. in Medicine and Biology47(14):2547—-2560.
Jun, S. C., Pearlmutter, B. A., and Nolte, G. (2002b).
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