Communicated by Fernando Pineda

Learning State Space Trajectories in Recurrent
Neural Networks

Barak A. Pearlmutter
School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Many neural network learning procedures compute gradients of the
errors on the output layer of units after they have settled to their final
values. We describe a procedure for finding JF/0w;; where E is an
error functional of the temporal trajectory of the states of a continuous
recurrent network and w;; are the weights of that network. Computing
these quantities allows one to perform gradient descent in the weights
to minimize E. Simulations in which networks are taught to move
through limit cycles are shown. This type of recurrent network seems
particularly suited for temporally continuous domains, such as signal
processing, control, and speech.

1 Introduction

Pineda (1987) has shown how to train the fixpoints of a recurrent tem-
porally continuous generalization of backpropagation networks (Rumel-
hart et al. 1986). Such networks are governed by the coupled differential
equations

dy;
T— = —y i i .
0 y; + o) + 1 (1.1)
where
J

is the total input to unit 4, y; is the state of unit 4, T; is the time constant
of unit 7, ¢ is an arbitrary differentiable function', w;; are the weights,
and the initial conditions y;(#;) and driving functions I;(t) are the inputs
to the system.

Consider minimizing E(y), some functional of the trajectory taken by
y between #, and t;. For instance, E = [/'(yo(t) — f(1))*dt measures the
deviation of yy from the function f, and minimizing this £ would teach
the network to have y, imitate f. Below, we develop a technique for
computing 8E(y)/0w;; and 0E(y)/0T;, thus allowing us to do gradient
descent in the weights and time constants so as to minimize E.

MTypically 7(¢) = (1 + 7471, in which case a/(£) = a(£)(1 — a(¢)).

Neural Computation 1, 263-269 (1989) (€ 1989 Massachusetts Institute of Technology

264 Barak A. Pearlmutter

2 A Forward/Backward Technique

Let us define

§E
& byt (
In the usual case E is of the form _ff,:.l Fy(),) dt so e;(t) = A f (y(t), 1)/ Oy;(t).
Intuitively, e;(t) measures how much a small change to y; at time ¢ affects
E if everything else is left unchanged.
If we define z; by the differential equation

dzi 1 l P
i ﬁzi —e; — ; ﬁwijo(rj)zj (2.2)
with boundary conditions z;(t;) = 0 then
aE 1
== iolxy)z;d 2.3
du, T, yiolay)z;dt (2.3)

and

dF 1 o dy
—_— = —— s ——dt. 2.4
oT, ~ Ty Tt @

These results are derived using a finite difference approximation in
(Pearlmutter 1988), and can also be derived using the calculus of vari-
ations and Lagrange multipliers (William Skaggs, personal communi-
cation) or from the continuous form of dynamic programming (Bryson
1962).

3 Simulation Results

Using first order finite difference approximations, we integrated the sys-
tem y forward from t, to t;, set the boundary conditions z;(t;) = 0, and
integrated the system z backwards from t; to ¢, while numerically in-
tegrating z; 0'(z;)y; and z; dy;/dt, thus computing dE/dw;; and OE/OT;.

—t>

input hidden output

Figure 1: The XOR network.

Learning State Space Trajectories in Recurrent Neural Networks 265

x; |

o 11

A

o

=

Figure 2: The states of the output unit in the four cases plotted from t = 0 to
t = 5 after 200 epochs of learning. The error was computed only between ¢ = 2
and t = 3.

Since computing dz; /dt requires knowing ¢'(z;), we stored it and replayed
it backwards as well. We also stored and replayed y; as it is used in ex-
pressions being numerically integrated.

We used the error functional

_1 i 2
E= 2;[0 silys — dpYdi 3.1)

where d;(t) is the desired state of unit 7 at time ¢ and s,(¢) is the importance
of unit ¢ achieving that state at that time. Throughout, we used a(¢§) =
(1+e~%)~1. Time constants were initialized to 1, weights were initialized
to uniform random values between 1 and -1, and the initial values ;(ty)
were set to [;(¢y) + a(0). For these simulations we used At = 0.1.

All of these networks have an extra unit which has no incoming con-
nections, an external input of 0.5, and outgoing connections to all other
units. This unit provides a bias, which is equivalent to the negative of a
threshold. This detail is suppressed below.

3.1 Exclusive Or. The network of figure 1 was trained to solve the
XOR problem. Aside from the addition of time constants, the network
topology was that used by Pineda in (Pineda 1987). We defined £ =
i L % — d®)2dt where k ranges over the four cases, d is the correct
output, and y, is the state of the output unit. The inputs to the net I’
and I,;*’ range over the four possible boolean combinations in the four
different cases. With suitable choice of step size and momentum, training

266 Barak A. Pearlmutter

Figure 3: Desired states d; and d, plotted against each other (left); actual states
y1 and y2 plotted against each other at epoch 1,500 (center) and 12,000 (right).

time was comparable to standard backpropagation, averaging about one
hundred epochs.

It is interesting that even for this binary task, the network made use
of dynamical behavior. After extensive training the network behaved
as expected, saturating the output unit to the correct value. Earlier in
training, however, we occasionally (about one out of every ten training
sessions) observed the output unit at nearly the correct value between
t =2 and t = 3, but then saw it move in the wrong direction at ¢ = 3 and
end up stabilizing at a wildly incorrect value. Another dynamic effect,
which was present in almost every run, is shown in figure 2. Here,
the output unit heads in the wrong direction initially and then corrects
itself before the error window. A very minor case of diving towards the
correct value and then moving away is seen in the lower left-hand corner
of figure 2.

3.2 A Circular Trajectory. We trained a network with no input units,
four hidden units, and two output units, all fully connected, to follow the
circular trajectory of figure 3. It was required to be at the leftmost point
on the circle at t =5 and to go around the circle twice, with each circuit
taking 16 units of time. While unconstrained by the environment, the
network moves from its initial position at (0.5.0.5) to the correct location
at the leftmost point on the circular trajectory. Although the network was
run for ten circuits of its cycle, these overlap so closely that the separate
circuits are not visible.

Upon examining the network’s internals, we found that it devoted
three of its hidden units to maintaining and shaping a limit cycle, while
the fourth hidden unit decayed away quickly. Before it decayed, it pulled
the other units to the appropriate starting point of the limit cycle, and

Learning State Space Trajectories in Recurrent Neural Networks 267

after it decayed it ceased to affect the rest of the network. The network
used different units for the limit behavior and the initial behavior, an
appropriate modularization.

3.3 A Figure Eight. We were unable to train a network with four
hidden units to follow the figure eight shape shown in figure 4, so we
used a network with ten hidden units. Since the trajectory of the output
units crosses itself, and the units are governed by first order differential
equations, hidden units are necessary for this task regardless of the o
function. Training was more difficult than for the circular trajectory, and
shaping the network’s behavior by gradually extending the length of time
of the simulation proved useful.

Before t = 5, while unconstrained by the environment, the network
moves in a short loop from the initial position at (0.5,0.5) to where it
should sit on the limit cycle at ¢ = 5, namely (0.5.0.5). Although the
network was run for ten circuits of its cycle to produce this graph, these
overlap so closely that the separate circuits are not visible.

4 Embellishments

Adding time delays to the links simply adds analogous time delays to the
differential equation for z. This approach can be used to learn modifiable
time delays.

We can avoid the backwards pass by using a shooting method to
update guesses for the correct values of z;(fq) such that z,(¢;) = 0 and
integrating everything in the forward direction. Regretably, the com-
putation required to compute the derivatives required by the shooting
method seems excessive, and numeric stability is poor.

We can derive a “teacher forced” variant of our learning algorithm,
presumably obtaining speedups similar to those reported by Williams
and Zipser (1989).

It would be useful to have some characterization of the class of tra-
jectories that a network can learn as a function of the number of hidden
units. These networks have at least the representational power of Fourier
decompositions, as one can use a pair of nodes to build an oscillator of
arbitrary frequency by making use of the local linearity of the ¢ function
(Furst 1988). We have also found simple bounds on d?y/dt? based on
the number of units, the largest weight, and the largest reciprocal time
constant.

Experiments with perturbing the cyclic networks of section 3 shows
that they have developed true limit cycles which attract neighboring
states and pull them into the cycle. The oscillatory behavior of the two
output units was not independent, but was coupled by the hidden units,
which keep them phase locked even in the face of massive disruptions.

268 Barak A. Pearlmutter

Figure 4: Desired states d; and d plotted against each other (left); actual states
1 and gy plotted against each other at epoch 3,182 (center) and 20,000 (right).

Further details on these and other related topics can be found in
(Pearlmutter 1988).

5 Related Network Models

We use the same class of networks used by Pineda (1987), but he is con-
cerned only with the limit behavior of these networks, and completely
suppresses all other temporal behavior. His learning technique is appli-
cable only when the network has a simple fixpoint; limit cycles or other
non-point attractors violate a mathematical assumption upon which his
technique is based.

We can derive Pineda’s equations from ours. Let [; be held constant,
assume that the network settles to a fixpoint, let the initial conditions
be this fixpoint, that is, y;(to) = y;(c0), and let E measure Pineda’s error
integrated over a short interval after ¢;, with an appropriate normaliza-
tion constant. As t; tends to infinity, (2.2) and (2.3) reduce to Pineda’s
equations, so in a sense our equations are a generalization of Pineda’s;
but these assumptions strain the analogy.

Jordan (1986) uses a conventional backpropagation network with the
outputs clocked back to the inputs to generate temporal sequences. The
treatment of time is the major difference between Jordan’s networks and
those in this work. The heart of Jordan’s network is atemporal, taking
inputs to outputs without reference to time, while an external mechanism
is used to clock the network through a sequence of states in much the
same way that hardware designers use a clock to drive a piece of com-
binatorial logic through a sequence of states. In our work, the network
is not externally clocked; instead, it evolves continuously through time
according to a set of coupled differential equations.

Learning State Space Trajectories in Recurrent Neural Networks 269

Most recently, Williams and Zipser (1989) have discovered an online
learning procedure for networks of this sort. The tradeoffs between this
procedure and that of Williams and Zipser is explored in some detail in
(Pearlmutter 1988).

6 Acknowledgments

We thank Richard Szeliski for helpful comments and David Touretzky
for unflagging support.

This research was sponsored in part by National Science Foundation
grant EET-8716324, and by the Office of Naval Research under contract
number N00014-86-K-0678. Barak Pearlmutter is a Fannie and John Hertz
Foundation fellow.

References

Bryson, A.E., Jr. 1962. A steepest ascent method for solving optimum program-
ming problems. Journal of Applied Mechanics, 29(2), 247.

Furst, M. 1988. Personal communication.

Jordan, M.I. 1986. Attractor dynamics and parallelism in a connectionist se-
quential machine. In: Proceedings of the 1986 Cognitive Science Conference,
531-546. Lawrence Erlbaum.

Pearlmutter, B. 1988. Learning state space trajectories in recurrent neural networks.
Technical Report CMU-C5-88-191, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA.

Pineda, F. 1987. Generalization of backpropagation to recurrent neural net-
works. Physical Review Letters, 19(59), 2229-2232,

Rumelhart, D.E., G.E. Hinton, and R.J. Williams. 1986. Learning internal rep-
resentations by error propagation. In: Parallel distributed processing: Ex-
plorations in the microstructure of cognition. Cambridge, MA: Bradford
Books.

Werbos, I’]. 1988. Generalization of backpropagation with application to a re-
current gas market model. Neural Networks, 1, 339-356.

Williams, R.]J. and D. Zipser. 1989. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1, 270-280.

Received 17 October 1988; accepted 14 March 1989.

